Suppr超能文献

细胞周期抑制剂p21、p27、p14和p16在胶质瘤中的表达。与经典预后因素及患者预后的相关性。

Expression of cell cycle inhibitors p21, p27, p14 and p16 in gliomas. Correlation with classic prognostic factors and patients' outcome.

作者信息

Zolota Vassiliki, Tsamandas Athanassios C, Aroukatos Panagiotis, Panagiotopoulos Vassilios, Maraziotis Theodore, Poulos Constantinos, Scopa Chrisoula D

机构信息

Department of Pathology, University of Patras, Medical School, Patras, Greece.

出版信息

Neuropathology. 2008 Feb;28(1):35-42. doi: 10.1111/j.1440-1789.2007.00844.x.

Abstract

Gliomas are among the most aggressive and treatment-refractory of all human tumors. The aim of the present study is to evaluate the role of the expression of cell cycle molecules as prognostic indicators in gliomas. We immunohistochemically analyzed the expression of p21, p27, p14, p16, p53 and proliferation marker Ki67, in 67 low and high grade astrocytic tumors. High grade tumors exhibited higher labeling indices for Ki67 (P = 0.004), p53 (P = 0.039) and slightly higher index for p21 (P = 0.07) compared to low grade tumors. p14 and p16 were more frequently present in low grade tumors (P = 0.001 and P = 0.052, respectively). Worse survival was correlated with high grade tumors (P < 0.0001) and higher Ki67 index (P < 0.0001). Cox regression analysis revealed that only age, grade and marginally Ki67 index were independent prognostic factors. Cell cycle alterations are involved in the malignant progression of astrocytomas, but only age, tumor grade and proliferating index can predict the outcome of the patients with glioma.

摘要

神经胶质瘤是所有人类肿瘤中最具侵袭性且最难治疗的肿瘤之一。本研究的目的是评估细胞周期分子表达作为神经胶质瘤预后指标的作用。我们采用免疫组织化学方法分析了67例低级别和高级别星形细胞瘤中p21、p27、p14、p16、p53以及增殖标志物Ki67的表达情况。与低级别肿瘤相比,高级别肿瘤的Ki67(P = 0.004)、p53(P = 0.039)标记指数更高,p21指数略高(P = 0.07)。p14和p16在低级别肿瘤中更常见(分别为P = 0.001和P = 0.052)。较差的生存率与高级别肿瘤(P < 0.0001)和较高的Ki67指数(P < 0.0001)相关。Cox回归分析显示,只有年龄、级别以及勉强算得上的Ki67指数是独立的预后因素。细胞周期改变参与星形细胞瘤的恶性进展,但只有年龄、肿瘤级别和增殖指数能够预测神经胶质瘤患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验