Cecconi Ciro, Shank Elizabeth A, Dahlquist Frederick W, Marqusee Susan, Bustamante Carlos
Department of Molecular and Cell Biology, Institute for Quantitative Biology, University of California - Berkeley, Berkeley, CA 94720-3220, USA.
Eur Biophys J. 2008 Jul;37(6):729-38. doi: 10.1007/s00249-007-0247-y. Epub 2008 Jan 9.
Here we report on a method that extends the study of the mechanical behavior of single proteins to the low force regime of optical tweezers. This experimental approach relies on the use of DNA handles to specifically attach the protein to polystyrene beads and minimize the non-specific interactions between the tethering surfaces. The handles can be attached to any exposed pair of cysteine residues. Handles of different lengths were employed to mechanically manipulate both monomeric and polymeric proteins. The low spring constant of the optical tweezers enabled us to monitor directly refolding events and fluctuations between different molecular structures in quasi-equilibrium conditions. This approach, which has already yielded important results on the refolding process of the protein RNase H (Cecconi et al. in Science 309: 2057-2060, 2005), appears robust and widely applicable to any protein engineered to contain a pair of reactive cysteine residues. It represents a new strategy to study protein folding at the single molecule level, and should be applicable to a range of problems requiring tethering of protein molecules.
在此,我们报告一种方法,该方法将单蛋白力学行为的研究扩展至光镊的低力范围。这种实验方法依赖于使用DNA手柄将蛋白特异性连接到聚苯乙烯珠上,并使连接表面之间的非特异性相互作用最小化。手柄可连接到任何一对暴露的半胱氨酸残基上。使用不同长度的手柄对单体蛋白和聚合蛋白进行力学操作。光镊的低弹簧常数使我们能够在准平衡条件下直接监测重折叠事件以及不同分子结构之间的波动。这种方法已在蛋白核糖核酸酶H的重折叠过程中取得了重要成果(塞科尼等人,《科学》,2005年,第309卷,第2057 - 2060页),似乎具有很强的适用性,可广泛应用于任何经工程改造含有一对反应性半胱氨酸残基的蛋白。它代表了一种在单分子水平研究蛋白折叠的新策略,并且应该适用于一系列需要连接蛋白分子的问题。