Suppr超能文献

通过埋藏水分子的磁弛豫色散探测纳秒至微秒级蛋白质动力学。

Nanosecond to microsecond protein dynamics probed by magnetic relaxation dispersion of buried water molecules.

作者信息

Persson Erik, Halle Bertil

机构信息

Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden.

出版信息

J Am Chem Soc. 2008 Feb 6;130(5):1774-87. doi: 10.1021/ja0775873. Epub 2008 Jan 10.

Abstract

Large-scale protein conformational motions on nanosecond-microsecond time scales are important for many biological processes, but remain largely unexplored because of methodological limitations. NMR relaxation methods can access these time scales if protein tumbling is prevented, but the isotropy required for high-resolution solution NMR is then lost. However, if the immobilized protein molecules are randomly oriented, the water 2H and 17O spins relax as in a solution of freely tumbling protein molecules, with the crucial difference that they now sample motions on all time scales up to approximately 100 micros. In particular, the exchange rates of internal water molecules can be determined directly from the 2H or 17O magnetic relaxation dispersion (MRD) profile. This possibility opens up a new window for characterizing the motions of individual internal water molecules as well as the large-scale protein conformational fluctuations that govern the exchange rates of structural water molecules. We introduce and validate this new NMR method by presenting and analyzing an extensive set of 2H and 17O MRD data from cross-linked gels of two model proteins: bovine pancreatic trypsin inhibitor and ubiquitin. We determine residence times and order parameters of four internal water molecules in these proteins and show that they are quantitatively consistent with the information available from crystallography and solution MRD. We also show how slow motions of side-chains bearing labile hydrogens can be monitored by the same approach. Proteins of any size can be studied at physiological hydration levels with this method.

摘要

纳秒至微秒时间尺度上的大规模蛋白质构象运动对许多生物过程都很重要,但由于方法学上的限制,在很大程度上仍未得到探索。如果能阻止蛋白质翻滚,核磁共振弛豫方法就能探测到这些时间尺度,但此时高分辨率溶液核磁共振所需的各向同性就会丧失。然而,如果固定化的蛋白质分子是随机取向的,水的2H和17O自旋弛豫情况就如同在自由翻滚的蛋白质分子溶液中一样,关键的区别在于它们现在能对直至约100微秒的所有时间尺度上的运动进行采样。特别是,内部水分子的交换速率可以直接从2H或17O磁弛豫色散(MRD)曲线中确定。这种可能性为表征单个内部水分子的运动以及控制结构水分子交换速率的大规模蛋白质构象波动打开了一扇新窗口。我们通过展示和分析来自两种模型蛋白(牛胰蛋白酶抑制剂和泛素)交联凝胶的大量2H和17O MRD数据,引入并验证了这种新的核磁共振方法。我们确定了这些蛋白质中四个内部水分子的停留时间和序参,结果表明它们与晶体学和溶液MRD提供的信息在定量上是一致的。我们还展示了如何通过相同方法监测带有不稳定氢的侧链的缓慢运动。使用这种方法可以在生理水合水平下研究任何大小的蛋白质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验