Suppr超能文献

植物蒺藜苜蓿对其共生菌苜蓿中华根瘤菌或胞外多糖缺陷型突变体的差异响应。

Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant.

作者信息

Jones Kathryn M, Sharopova Natalya, Lohar Dasharath P, Zhang Jennifer Q, VandenBosch Kathryn A, Walker Graham C

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):704-9. doi: 10.1073/pnas.0709338105. Epub 2008 Jan 9.

Abstract

Sinorhizobium meliloti forms symbiotic, nitrogen-fixing nodules on the roots of Medicago truncatula. The bacteria invade and colonize the roots through structures called infection threads. S. meliloti unable to produce the exopolysaccharide succinoglycan are unable to establish a symbiosis because they are defective in initiating the production of infection threads and in invading the plant. Here, we use microarrays representing 16,000 M. truncatula genes to compare the differential transcriptional responses of this host plant to wild-type and succinoglycan-deficient S. meliloti at the early time point of 3 days postinoculation. This report describes an early divergence in global plant gene expression responses caused by a rhizobial defect in succinoglycan production, rather than in Nod factor production. The microarray data show that M. truncatula inoculated with wild-type, succinoglycan-producing S. meliloti more strongly express genes encoding translation components, protein degradation machinery, and some nodulins than plants inoculated with succinoglycan-deficient bacteria. This finding is consistent with wild-type-inoculated plants having received a signal, distinct from the well characterized Nod factor, to alter their metabolic activity and prepare for invasion. In contrast, M. truncatula inoculated with succinoglycan-deficient S. meliloti more strongly express an unexpectedly large number of genes in two categories: plant defense responses and unknown functions. One model consistent with our results is that appropriate symbiotically active exopolysaccharides act as signals to plant hosts to initiate infection thread formation and that, in the absence of this signal, plants terminate the infection process, perhaps via a defense response.

摘要

苜蓿中华根瘤菌在蒺藜苜蓿的根部形成共生固氮根瘤。这些细菌通过称为感染丝的结构侵入并定殖于根部。不能产生胞外多糖琥珀聚糖的苜蓿中华根瘤菌无法建立共生关系,因为它们在启动感染丝的产生和侵入植物方面存在缺陷。在这里,我们使用代表16000个蒺藜苜蓿基因的微阵列,比较该宿主植物在接种后3天的早期时间点对野生型和琥珀聚糖缺陷型苜蓿中华根瘤菌的差异转录反应。本报告描述了由根瘤菌在琥珀聚糖产生而非结瘤因子产生方面的缺陷所导致的全球植物基因表达反应的早期差异。微阵列数据显示,与接种琥珀聚糖缺陷型细菌的植物相比,接种野生型、能产生琥珀聚糖的苜蓿中华根瘤菌的蒺藜苜蓿更强烈地表达编码翻译成分、蛋白质降解机制和一些根瘤蛋白的基因。这一发现与接种野生型的植物接收到一种不同于已充分表征的结瘤因子的信号,从而改变其代谢活性并为入侵做准备相一致。相比之下,接种琥珀聚糖缺陷型苜蓿中华根瘤菌的蒺藜苜蓿在两类基因中更强烈地表达数量出乎意料的大量基因:植物防御反应和未知功能基因。与我们的结果一致的一种模型是,合适的具有共生活性的胞外多糖作为信号向植物宿主发出启动感染丝形成的信号,并且在没有这种信号时,植物可能通过防御反应终止感染过程。

相似文献

1
Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):704-9. doi: 10.1073/pnas.0709338105. Epub 2008 Jan 9.
5
Important Late-Stage Symbiotic Role of the Sinorhizobium meliloti Exopolysaccharide Succinoglycan.
J Bacteriol. 2018 Jun 11;200(13). doi: 10.1128/JB.00665-17. Print 2018 Jul 1.
7
Responses of the model legume Medicago truncatula to the rhizobial exopolysaccharide succinoglycan.
Plant Signal Behav. 2008 Oct;3(10):888-90. doi: 10.4161/psb.3.10.6512.
8
WSM419 Genes That Improve Symbiosis between Rm1021 and Jemalong A17 and in Other Symbiosis Systems.
Appl Environ Microbiol. 2021 Jul 13;87(15):e0300420. doi: 10.1128/AEM.03004-20.

引用本文的文献

1
Atypical rhizobia trigger nodulation and pathogenesis on the same legume hosts.
Nat Commun. 2024 Oct 26;15(1):9246. doi: 10.1038/s41467-024-53388-x.
2
Comparative genomic and transcriptomic analyses provide new insight into symbiotic host specificity.
iScience. 2024 Jun 6;27(7):110207. doi: 10.1016/j.isci.2024.110207. eCollection 2024 Jul 19.
4
MtRGF3 peptide activates defense responses and represses the expressions of nodulation signaling genes in .
Acta Biochim Biophys Sin (Shanghai). 2023 Jun 28;55(8):1319-1322. doi: 10.3724/abbs.2023056.
5
Rhizobia induce SYMRK endocytosis in Phaseolus vulgaris root hair cells.
Planta. 2023 Mar 16;257(4):83. doi: 10.1007/s00425-023-04116-0.
6
Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System.
Int J Mol Sci. 2023 Feb 1;24(3):2800. doi: 10.3390/ijms24032800.
7
Distinct Responses to Pathogenic and Symbionic Microorganisms: The Role of Plant Immunity.
Int J Mol Sci. 2022 Sep 9;23(18):10427. doi: 10.3390/ijms231810427.
8
Innovation and appropriation in mycorrhizal and rhizobial Symbioses.
Plant Cell. 2022 Apr 26;34(5):1573-1599. doi: 10.1093/plcell/koac039.
9
Application of CRISPR-Cas9 in plant-plant growth-promoting rhizobacteria interactions for next Green Revolution.
3 Biotech. 2021 Dec;11(12):492. doi: 10.1007/s13205-021-03041-x. Epub 2021 Nov 13.

本文引用的文献

1
How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model.
Nat Rev Microbiol. 2007 Aug;5(8):619-33. doi: 10.1038/nrmicro1705.
2
An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction.
Plant Cell. 2007 Apr;19(4):1221-34. doi: 10.1105/tpc.106.048264. Epub 2007 Apr 20.
4
Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes.
Trends Plant Sci. 2006 Dec;11(12):594-600. doi: 10.1016/j.tplants.2006.10.002. Epub 2006 Nov 7.
7
Insights into symbiotic nitrogen fixation in Medicago truncatula.
Mol Plant Microbe Interact. 2006 Mar;19(3):330-41. doi: 10.1094/MPMI-19-0330.
8
Transcript analysis of early nodulation events in Medicago truncatula.
Plant Physiol. 2006 Jan;140(1):221-34. doi: 10.1104/pp.105.070326. Epub 2005 Dec 23.
9
Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light.
Plant Cell Physiol. 2004 Dec;45(12):1798-808. doi: 10.1093/pcp/pch205.
10
LIN, a Medicago truncatula gene required for nodule differentiation and persistence of rhizobial infections.
Plant Physiol. 2004 Nov;136(3):3682-91. doi: 10.1104/pp.104.045575. Epub 2004 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验