Jones Kathryn M, Sharopova Natalya, Lohar Dasharath P, Zhang Jennifer Q, VandenBosch Kathryn A, Walker Graham C
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):704-9. doi: 10.1073/pnas.0709338105. Epub 2008 Jan 9.
Sinorhizobium meliloti forms symbiotic, nitrogen-fixing nodules on the roots of Medicago truncatula. The bacteria invade and colonize the roots through structures called infection threads. S. meliloti unable to produce the exopolysaccharide succinoglycan are unable to establish a symbiosis because they are defective in initiating the production of infection threads and in invading the plant. Here, we use microarrays representing 16,000 M. truncatula genes to compare the differential transcriptional responses of this host plant to wild-type and succinoglycan-deficient S. meliloti at the early time point of 3 days postinoculation. This report describes an early divergence in global plant gene expression responses caused by a rhizobial defect in succinoglycan production, rather than in Nod factor production. The microarray data show that M. truncatula inoculated with wild-type, succinoglycan-producing S. meliloti more strongly express genes encoding translation components, protein degradation machinery, and some nodulins than plants inoculated with succinoglycan-deficient bacteria. This finding is consistent with wild-type-inoculated plants having received a signal, distinct from the well characterized Nod factor, to alter their metabolic activity and prepare for invasion. In contrast, M. truncatula inoculated with succinoglycan-deficient S. meliloti more strongly express an unexpectedly large number of genes in two categories: plant defense responses and unknown functions. One model consistent with our results is that appropriate symbiotically active exopolysaccharides act as signals to plant hosts to initiate infection thread formation and that, in the absence of this signal, plants terminate the infection process, perhaps via a defense response.
苜蓿中华根瘤菌在蒺藜苜蓿的根部形成共生固氮根瘤。这些细菌通过称为感染丝的结构侵入并定殖于根部。不能产生胞外多糖琥珀聚糖的苜蓿中华根瘤菌无法建立共生关系,因为它们在启动感染丝的产生和侵入植物方面存在缺陷。在这里,我们使用代表16000个蒺藜苜蓿基因的微阵列,比较该宿主植物在接种后3天的早期时间点对野生型和琥珀聚糖缺陷型苜蓿中华根瘤菌的差异转录反应。本报告描述了由根瘤菌在琥珀聚糖产生而非结瘤因子产生方面的缺陷所导致的全球植物基因表达反应的早期差异。微阵列数据显示,与接种琥珀聚糖缺陷型细菌的植物相比,接种野生型、能产生琥珀聚糖的苜蓿中华根瘤菌的蒺藜苜蓿更强烈地表达编码翻译成分、蛋白质降解机制和一些根瘤蛋白的基因。这一发现与接种野生型的植物接收到一种不同于已充分表征的结瘤因子的信号,从而改变其代谢活性并为入侵做准备相一致。相比之下,接种琥珀聚糖缺陷型苜蓿中华根瘤菌的蒺藜苜蓿在两类基因中更强烈地表达数量出乎意料的大量基因:植物防御反应和未知功能基因。与我们的结果一致的一种模型是,合适的具有共生活性的胞外多糖作为信号向植物宿主发出启动感染丝形成的信号,并且在没有这种信号时,植物可能通过防御反应终止感染过程。