Suppr超能文献

使用投影梯度法的多层非负矩阵分解

Multilayer nonnegative matrix factorization using projected gradient approaches.

作者信息

Cichocki Andrzej, Zdunek Rafal

机构信息

Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.

出版信息

Int J Neural Syst. 2007 Dec;17(6):431-46. doi: 10.1142/S0129065707001275.

Abstract

The most popular algorithms for Nonnegative Matrix Factorization (NMF) belong to a class of multiplicative Lee-Seung algorithms which have usually relative low complexity but are characterized by slow-convergence and the risk of getting stuck to in local minima. In this paper, we present and compare the performance of additive algorithms based on three different variations of a projected gradient approach. Additionally, we discuss a novel multilayer approach to NMF algorithms combined with multi-start initializations procedure, which in general, considerably improves the performance of all the NMF algorithms. We demonstrate that this approach (the multilayer system with projected gradient algorithms) can usually give much better performance than standard multiplicative algorithms, especially, if data are ill-conditioned, badly-scaled, and/or a number of observations is only slightly greater than a number of nonnegative hidden components. Our new implementations of NMF are demonstrated with the simulations performed for Blind Source Separation (BSS) data.

摘要

用于非负矩阵分解(NMF)的最流行算法属于一类乘法李 - 胜算法,这类算法通常具有相对较低的复杂度,但具有收敛速度慢以及陷入局部最小值的风险。在本文中,我们提出并比较了基于投影梯度方法的三种不同变体的加法算法的性能。此外,我们讨论了一种结合多起点初始化过程的新颖的NMF算法多层方法,总体而言,该方法显著提高了所有NMF算法的性能。我们证明,这种方法(带有投影梯度算法的多层系统)通常能比标准乘法算法提供更好的性能,特别是在数据条件不佳、缩放不当和/或观测值数量仅略大于非负隐藏分量数量的情况下。我们通过对盲源分离(BSS)数据进行的模拟展示了我们新的NMF实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验