IEEE Trans Neural Netw Learn Syst. 2013 Mar;24(3):422-34. doi: 10.1109/TNNLS.2012.2235461.
The state-of-the-art classification methods which employ nonnegative matrix factorization (NMF) employ two consecutive independent steps. The first one performs data transformation (dimensionality reduction) and the second one classifies the transformed data using classification methods, such as nearest neighbor/centroid or support vector machines (SVMs). In the following, we focus on using NMF factorization followed by SVM classification. Typically, the parameters of these two steps, e.g., the NMF bases/coefficients and the support vectors, are optimized independently, thus leading to suboptimal classification performance. In this paper, we merge these two steps into one by incorporating maximum margin classification constraints into the standard NMF optimization. The notion behind the proposed framework is to perform NMF, while ensuring that the margin between the projected data of the two classes is maximal. The concurrent NMF factorization and support vector optimization are performed through a set of multiplicative update rules. In the same context, the maximum margin classification constraints are imposed on the NMF problem with additional discriminant constraints and respective multiplicative update rules are extracted. The impact of the maximum margin classification constraints on the NMF factorization problem is addressed in Section VI. Experimental results in several databases indicate that the incorporation of the maximum margin classification constraints into the NMF and discriminant NMF objective functions improves the accuracy of the classification.
采用非负矩阵分解 (NMF) 的最先进分类方法采用两个连续的独立步骤。第一个步骤执行数据转换(降维),第二个步骤使用分类方法对转换后的数据进行分类,例如最近邻/质心或支持向量机 (SVM)。在下面,我们专注于使用 NMF 分解 followed by SVM 分类。通常,这两个步骤的参数,例如 NMF 基/系数和支持向量,是独立优化的,因此导致分类性能不佳。在本文中,我们通过将最大边界分类约束合并到标准 NMF 优化中,将这两个步骤合并为一个步骤。所提出框架背后的概念是执行 NMF,同时确保两类数据的投影之间的边界最大化。通过一组乘法更新规则同时执行 NMF 分解和支持向量优化。在相同的上下文中,在 NMF 问题上施加最大边界分类约束,并提取相应的乘法更新规则。在第六节中讨论了最大边界分类约束对 NMF 分解问题的影响。在几个数据库中的实验结果表明,将最大边界分类约束纳入 NMF 和判别 NMF 目标函数可以提高分类的准确性。