Zhou Guoxu, Xie Shengli, Yang Zuyuan, Yang Jun-Mei, He Zhaoshui
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China.
IEEE Trans Neural Netw. 2011 Oct;22(10):1626-37. doi: 10.1109/TNN.2011.2164621. Epub 2011 Aug 30.
Nonnegative matrix factorization (NMF) with minimum-volume-constraint (MVC) is exploited in this paper. Our results show that MVC can actually improve the sparseness of the results of NMF. This sparseness is L(0)-norm oriented and can give desirable results even in very weak sparseness situations, thereby leading to the significantly enhanced ability of learning parts of NMF. The close relation between NMF, sparse NMF, and the MVC_NMF is discussed first. Then two algorithms are proposed to solve the MVC_NMF model. One is called quadratic programming_MVC_NMF (QP_MVC_NMF) which is based on quadratic programming and the other is called negative glow_MVC_NMF (NG_MVC_NMF) because it uses multiplicative updates incorporating natural gradient ingeniously. The QP_MVC_NMF algorithm is quite efficient for small-scale problems and the NG_MVC_NMF algorithm is more suitable for large-scale problems. Simulations show the efficiency and validity of the proposed methods in applications of blind source separation and human face images analysis.
本文采用了具有最小体积约束(MVC)的非负矩阵分解(NMF)。我们的结果表明,MVC实际上可以提高NMF结果的稀疏性。这种稀疏性是以L(0)范数为导向的,即使在非常弱的稀疏情况下也能给出理想的结果,从而显著提高了NMF学习部分的能力。首先讨论了NMF、稀疏NMF和MVC_NMF之间的密切关系。然后提出了两种算法来求解MVC_NMF模型。一种称为二次规划_MVC_NMF(QP_MVC_NMF),它基于二次规划;另一种称为负向发光_MVC_NMF(NG_MVC_NMF),因为它巧妙地使用了结合自然梯度的乘法更新。QP_MVC_NMF算法对于小规模问题非常有效,而NG_MVC_NMF算法更适合大规模问题。仿真结果表明了所提方法在盲源分离和人脸图像分析应用中的有效性和实用性。