Suppr超能文献

一种适应性生长速率调节的通用机制。

A generic mechanism for adaptive growth rate regulation.

作者信息

Furusawa Chikara, Kaneko Kunihiko

机构信息

Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan.

出版信息

PLoS Comput Biol. 2008 Jan;4(1):e3. doi: 10.1371/journal.pcbi.0040003.

Abstract

How can a microorganism adapt to a variety of environmental conditions despite the existence of a limited number of signal transduction mechanisms? We show that for any growing cells whose gene expression fluctuate stochastically, the adaptive cellular state is inevitably selected by noise, even without a specific signal transduction network for it. In general, changes in protein concentration in a cell are given by its synthesis minus dilution and degradation, both of which are proportional to the rate of cell growth. In an adaptive state with a higher growth speed, both terms are large and balanced. Under the presence of noise in gene expression, the adaptive state is less affected by stochasticity since both the synthesis and dilution terms are large, while for a nonadaptive state both the terms are smaller so that cells are easily kicked out of the original state by noise. Hence, escape time from a cellular state and the cellular growth rate are negatively correlated. This leads to a selection of adaptive states with higher growth rates, and model simulations confirm this selection to take place in general. The results suggest a general form of adaptation that has never been brought to light--a process that requires no specific mechanisms for sensory adaptation. The present scheme may help explain a wide range of cellular adaptive responses including the metabolic flux optimization for maximal cell growth.

摘要

尽管信号转导机制数量有限,微生物如何适应各种环境条件?我们表明,对于任何基因表达随机波动的生长细胞,即使没有特定的信号转导网络,适应性细胞状态也不可避免地由噪声选择。一般来说,细胞中蛋白质浓度的变化由其合成量减去稀释量和降解量给出,这两者都与细胞生长速率成正比。在具有较高生长速度的适应状态下,这两个项都很大且平衡。在基因表达存在噪声的情况下,适应状态受随机性的影响较小,因为合成项和稀释项都很大,而对于非适应状态,这两个项都较小,因此细胞很容易被噪声踢出原始状态。因此,从细胞状态逃逸的时间与细胞生长速率呈负相关。这导致选择具有较高生长速率的适应状态,模型模拟证实这种选择通常会发生。结果表明了一种从未被揭示的一般适应形式——一个不需要特定感觉适应机制的过程。目前的方案可能有助于解释广泛的细胞适应性反应,包括为实现最大细胞生长而进行的代谢通量优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65a2/2217568/cdf6b9e81600/pcbi.0040003.g001.jpg

相似文献

1
A generic mechanism for adaptive growth rate regulation.
PLoS Comput Biol. 2008 Jan;4(1):e3. doi: 10.1371/journal.pcbi.0040003.
2
Relevance of phenotypic noise to adaptation and evolution.
IET Syst Biol. 2008 Sep;2(5):234-46. doi: 10.1049/iet-syb:20070078.
3
High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17457-62. doi: 10.1073/pnas.0807278105. Epub 2008 Nov 5.
6
Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay.
J Bacteriol. 2015 Jun 15;197(12):1976-87. doi: 10.1128/JB.00074-15. Epub 2015 Mar 30.
7
Regulation by the modulation of gene expression variability.
J Bacteriol. 2015 Jun 15;197(12):1974-5. doi: 10.1128/JB.00235-15. Epub 2015 Mar 30.
8
Generation and filtering of gene expression noise by the bacterial cell cycle.
BMC Biol. 2016 Feb 11;14:11. doi: 10.1186/s12915-016-0231-z.
9
Signal transduction: networks and integrated circuits in bacterial cognition.
Curr Biol. 2007 Dec 4;17(23):R1021-4. doi: 10.1016/j.cub.2007.10.011.

引用本文的文献

1
Evolutionary features in a minimal physical system: Diversity, selection, growth, inheritance, and adaptation.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2425753122. doi: 10.1073/pnas.2425753122. Epub 2025 Jul 30.
2
Effective bet-hedging through growth rate dependent stability.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2211091120. doi: 10.1073/pnas.2211091120. Epub 2023 Feb 13.
3
Evolution enhances mutational robustness and suppresses the emergence of a new phenotype: A new computational approach for studying evolution.
PLoS Comput Biol. 2022 Jan 19;18(1):e1009796. doi: 10.1371/journal.pcbi.1009796. eCollection 2022 Jan.
4
Emergence of cooperative bistability and robustness of gene regulatory networks.
PLoS Comput Biol. 2020 Jun 29;16(6):e1007969. doi: 10.1371/journal.pcbi.1007969. eCollection 2020 Jun.
6
Exploratory adaptation in large random networks.
Nat Commun. 2017 Apr 21;8:14826. doi: 10.1038/ncomms14826.
9
Epigenetic feedback regulation accelerates adaptation and evolution.
PLoS One. 2013 May 8;8(5):e61251. doi: 10.1371/journal.pone.0061251. Print 2013.
10
Cooperative adaptive responses in gene regulatory networks with many degrees of freedom.
PLoS Comput Biol. 2013 Apr;9(4):e1003001. doi: 10.1371/journal.pcbi.1003001. Epub 2013 Apr 4.

本文引用的文献

1
Ubiquity of log-normal distributions in intra-cellular reaction dynamics.
Biophysics (Nagoya-shi). 2005 Apr 21;1:25-31. doi: 10.2142/biophysics.1.25. eCollection 2005.
2
Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge.
Mol Syst Biol. 2007;3:106. doi: 10.1038/msb4100147. Epub 2007 Apr 24.
3
4
Noise in protein expression scales with natural protein abundance.
Nat Genet. 2006 Jun;38(6):636-43. doi: 10.1038/ng1807. Epub 2006 May 21.
5
Synthetic gene recruitment reveals adaptive reprogramming of gene regulation in yeast.
Genetics. 2006 May;173(1):75-85. doi: 10.1534/genetics.106.055442. Epub 2006 Mar 1.
6
Cell fates as high-dimensional attractor states of a complex gene regulatory network.
Phys Rev Lett. 2005 Apr 1;94(12):128701. doi: 10.1103/PhysRevLett.94.128701.
7
Enhancement of cellular memory by reducing stochastic transitions.
Nature. 2005 May 12;435(7039):228-32. doi: 10.1038/nature03524.
8
Stochasticity in gene expression: from theories to phenotypes.
Nat Rev Genet. 2005 Jun;6(6):451-64. doi: 10.1038/nrg1615.
9
Noise propagation in gene networks.
Science. 2005 Mar 25;307(5717):1965-9. doi: 10.1126/science.1109090.
10
Gene regulation at the single-cell level.
Science. 2005 Mar 25;307(5717):1962-5. doi: 10.1126/science.1106914.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验