Suppr超能文献

通过适应度诱导吸引子选择对基因网络的自适应响应来适应环境变化。

Adaptive response of a gene network to environmental changes by fitness-induced attractor selection.

机构信息

Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan.

出版信息

PLoS One. 2006 Dec 20;1(1):e49. doi: 10.1371/journal.pone.0000049.

Abstract

Cells switch between various stable genetic programs (attractors) to accommodate environmental conditions. Signal transduction machineries efficiently convey environmental changes to the gene regulation apparatus in order to express the appropriate genetic program. However, since the number of environmental conditions is much larger than that of available genetic programs so that the cell may utilize the same genetic program for a large set of conditions, it may not have evolved a signaling pathway for every environmental condition, notably those that are rarely encountered. Here we show that in the absence of signal transduction, switching to the appropriate attractor state expressing the genes that afford adaptation to the external condition can occur. In a synthetic bistable gene switch in Escherichia coli in which mutually inhibitory operons govern the expression of two genes required in two alternative nutritional environments, cells reliably selected the "adaptive attractor" driven by gene expression noise. A mathematical model suggests that the "non-adaptive attractor" is avoided because in unfavorable conditions, cellular activity is lower, which suppresses mRNA metabolism, leading to larger fluctuations in gene expression. This, in turn, renders the non-adaptive state less stable. Although attractor selection is not as efficient as signal transduction via a dedicated cascade, it is simple and robust, and may represent a primordial mechanism for adaptive responses that preceded the evolution of signaling cascades for the frequently encountered environmental changes.

摘要

细胞在各种稳定的遗传程序(吸引子)之间切换,以适应环境条件。信号转导机制有效地将环境变化传递到基因调控装置,以表达适当的遗传程序。然而,由于环境条件的数量远远多于可用的遗传程序,因此细胞可能会使用相同的遗传程序来适应一大组条件,它可能没有为每一种环境条件进化出信号通路,特别是那些很少遇到的条件。在这里,我们表明,在没有信号转导的情况下,切换到表达适应外部条件的基因的适当吸引子状态是可能的。在大肠杆菌中的一种合成双稳态基因开关中,相互抑制的操纵子控制着两种在两种替代营养环境中所需的基因的表达,细胞可靠地选择了由基因表达噪声驱动的“适应性吸引子”。一个数学模型表明,避免了“非适应性吸引子”,因为在不利条件下,细胞活性较低,这会抑制 mRNA 代谢,导致基因表达的更大波动。反过来,使非适应性状态不太稳定。虽然吸引子选择不如通过专用级联的信号转导那样有效,但它简单而稳健,可能代表了信号级联进化之前的适应反应的原始机制,这些信号级联是为经常遇到的环境变化而进化的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a4a/1762378/c753190923bd/pone.0000049.g001.jpg

相似文献

1
3
Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli.
Nucleic Acids Res. 2016 Aug 19;44(14):6707-20. doi: 10.1093/nar/gkw273. Epub 2016 Apr 16.
4
Evolution of Boolean networks under selection for a robust response to external inputs yields an extensive neutral space.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021908. doi: 10.1103/PhysRevE.81.021908. Epub 2010 Feb 8.
5
Adaptive diversification in genes that regulate resource use in Escherichia coli.
PLoS Genet. 2007 Jan 19;3(1):e15. doi: 10.1371/journal.pgen.0030015.
6
Selection, adaptation, and bacterial operons.
Genome. 1989;31(1):265-71. doi: 10.1139/g89-044.
7
Optimal performance of the tryptophan operon of E. coli: a stochastic, dynamical, mathematical-modeling approach.
Bull Math Biol. 2014 Feb;76(2):314-34. doi: 10.1007/s11538-013-9920-8. Epub 2013 Dec 4.
8
Dynamics and evolution of stochastic bistable gene networks with sensing in fluctuating environments.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061902. doi: 10.1103/PhysRevE.78.061902. Epub 2008 Dec 2.
9
Mutations in global regulators lead to metabolic selection during adaptation to complex environments.
PLoS Genet. 2014 Dec 11;10(12):e1004872. doi: 10.1371/journal.pgen.1004872. eCollection 2014 Dec.
10
Predicting the asymmetric response of a genetic switch to noise.
J Theor Biol. 2008 Sep 7;254(1):37-44. doi: 10.1016/j.jtbi.2008.04.032. Epub 2008 May 4.

引用本文的文献

1
Effective bet-hedging through growth rate dependent stability.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2211091120. doi: 10.1073/pnas.2211091120. Epub 2023 Feb 13.
2
Emergent expression of fitness-conferring genes by phenotypic selection.
PNAS Nexus. 2022 Jun 10;1(3):pgac069. doi: 10.1093/pnasnexus/pgac069. eCollection 2022 Jul.
4
Self-Reproduction and Darwinian Evolution in Autocatalytic Chemical Reaction Systems.
Life (Basel). 2021 Apr 1;11(4):308. doi: 10.3390/life11040308.
5
Attractor selection based limited feedback hybrid precoding for uplink V2I communications.
IEEE Trans Veh Technol. 2020;69(4). doi: 10.1109/tvt.2020.2971420.
7
Muscle Coordination Control for an Asymmetrically Antagonistic-Driven Musculoskeletal Robot Using Attractor Selection.
Appl Bionics Biomech. 2018 Sep 12;2018:9737418. doi: 10.1155/2018/9737418. eCollection 2018.
9
Aneuploidy Causes Non-genetic Individuality.
Cell. 2017 Apr 6;169(2):229-242.e21. doi: 10.1016/j.cell.2017.03.021.
10
Cell signaling as a cognitive process.
EMBO J. 2017 Mar 1;36(5):568-582. doi: 10.15252/embj.201695383. Epub 2017 Jan 30.

本文引用的文献

1
Ubiquity of log-normal distributions in intra-cellular reaction dynamics.
Biophysics (Nagoya-shi). 2005 Apr 21;1:25-31. doi: 10.2142/biophysics.1.25. eCollection 2005.
2
Noise in transcription negative feedback loops: simulation and experimental analysis.
Mol Syst Biol. 2006;2:41. doi: 10.1038/msb4100081. Epub 2006 Aug 1.
3
Noise in protein expression scales with natural protein abundance.
Nat Genet. 2006 Jun;38(6):636-43. doi: 10.1038/ng1807. Epub 2006 May 21.
4
Externally controlled attractor selection in a high-dimensional system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026207. doi: 10.1103/PhysRevE.72.026207. Epub 2005 Aug 15.
5
Cell fates as high-dimensional attractor states of a complex gene regulatory network.
Phys Rev Lett. 2005 Apr 1;94(12):128701. doi: 10.1103/PhysRevLett.94.128701.
6
Enhancement of cellular memory by reducing stochastic transitions.
Nature. 2005 May 12;435(7039):228-32. doi: 10.1038/nature03524.
7
Gene regulation at the single-cell level.
Science. 2005 Mar 25;307(5717):1962-5. doi: 10.1126/science.1106914.
8
Ultrasensitivity and noise propagation in a synthetic transcriptional cascade.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3581-6. doi: 10.1073/pnas.0408507102. Epub 2005 Feb 28.
9
Multistability in the lactose utilization network of Escherichia coli.
Nature. 2004 Feb 19;427(6976):737-40. doi: 10.1038/nature02298.
10
Prediction and measurement of an autoregulatory genetic module.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7714-9. doi: 10.1073/pnas.1332628100. Epub 2003 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验