Suppr超能文献

时态数据挖掘

Temporal data mining.

作者信息

Post Andrew R, Harrison James H

机构信息

Division of Clinical Informatics, Department of Public Health Sciences, University of Virginia, Suite 3181 West Complex, 1335 Hospital Drive, Charlottesville, VA 22908-0717, USA.

出版信息

Clin Lab Med. 2008 Mar;28(1):83-100, vii. doi: 10.1016/j.cll.2007.10.005.

Abstract

Large-scale clinical databases provide a detailed perspective on patient phenotype in disease and the characteristics of health care processes. Important information is often contained in the relationships between the values and timestamps of sequences of clinical data. The analysis of clinical time sequence data across entire patient populations may reveal data patterns that enable a more precise understanding of disease presentation, progression, and response to therapy, and thus could be of great value for clinical and translational research. Recent work suggests that the combination of temporal data mining methods with techniques from artificial intelligence research on knowledge-based temporal abstraction may enable the mining of clinically relevant temporal features from these previously problematic general clinical data.

摘要

大规模临床数据库提供了关于疾病患者表型和医疗保健过程特征的详细视角。重要信息通常包含在临床数据序列的值和时间戳之间的关系中。对全体患者群体的临床时间序列数据进行分析,可能会揭示出一些数据模式,从而使人们能够更精确地了解疾病的表现、进展以及对治疗的反应,因此对临床和转化研究可能具有巨大价值。最近的研究表明,将时间数据挖掘方法与基于知识的时间抽象人工智能研究技术相结合,可能有助于从这些以前存在问题的一般临床数据中挖掘出临床相关的时间特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验