Hauskrecht Milos, Valko Michal, Batal Iyad, Clermont Gilles, Visweswaran Shyam, Cooper Gregory F
Computer Science Department.
AMIA Annu Symp Proc. 2010 Nov 13;2010:286-90.
We develop and evaluate a data-driven approach for detecting unusual (anomalous) patient-management actions using past patient cases stored in an electronic health record (EHR) system. Our hypothesis is that patient-management actions that are unusual with respect to past patients may be due to a potential error and that it is worthwhile to raise an alert if such a condition is encountered. We evaluate this hypothesis using data obtained from the electronic health records of 4,486 post-cardiac surgical patients. We base the evaluation on the opinions of a panel of experts. The results support that anomaly-based alerting can have reasonably low false alert rates and that stronger anomalies are correlated with higher alert rates.
我们开发并评估了一种数据驱动的方法,用于使用存储在电子健康记录(EHR)系统中的既往患者病例来检测异常的患者管理行为。我们的假设是,相对于既往患者而言异常的患者管理行为可能是由于潜在错误导致的,并且如果遇到这种情况,值得发出警报。我们使用从4486名心脏外科术后患者的电子健康记录中获得的数据来评估这一假设。我们基于专家小组的意见进行评估。结果支持基于异常的警报可以具有相当低的误报率,并且更强的异常与更高的警报率相关。