Suppr超能文献

使用两种数据挖掘智能技术和逻辑回归预测肾移植受者生存率的分类模型

Classification Models to Predict Survival of Kidney Transplant Recipients Using Two Intelligent Techniques of Data Mining and Logistic Regression.

作者信息

Nematollahi M, Akbari R, Nikeghbalian S, Salehnasab C

机构信息

Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

School of Computer Engineering & IT, Shiraz University of Technology, Shiraz, Iran.

出版信息

Int J Organ Transplant Med. 2017;8(2):119-122. Epub 2017 May 1.

Abstract

Kidney transplantation is the treatment of choice for patients with end-stage renal disease (ESRD). Prediction of the transplant survival is of paramount importance. The objective of this study was to develop a model for predicting survival in kidney transplant recipients. In a cross-sectional study, 717 patients with ESRD admitted to Nemazee Hospital during 2008-2012 for renal transplantation were studied and the transplant survival was predicted for 5 years. The multilayer perceptron of artificial neural networks (MLP-ANN), logistic regression (LR), Support Vector Machine (SVM), and evaluation tools were used to verify the determinant models of the predictions and determine the independent predictors. The accuracy, area under curve (AUC), sensitivity, and specificity of SVM, MLP-ANN, and LR models were 90.4%, 86.5%, 98.2%, and 49.6%; 85.9%, 76.9%, 97.3%, and 26.1%; and 84.7%, 77.4%, 97.5%, and 17.4%, respectively. Meanwhile, the independent predictors were discharge time creatinine level, recipient age, donor age, donor blood group, cause of ESRD, recipient hypertension after transplantation, and duration of dialysis before transplantation. SVM and MLP-ANN models could efficiently be used for determining survival prediction in kidney transplant recipients.

摘要

肾移植是终末期肾病(ESRD)患者的首选治疗方法。预测移植肾存活至关重要。本研究的目的是建立一个预测肾移植受者存活的模型。在一项横断面研究中,对2008年至2012年期间入住内马齐医院进行肾移植的717例ESRD患者进行了研究,并对其移植肾存活情况进行了5年的预测。使用人工神经网络的多层感知器(MLP-ANN)、逻辑回归(LR)、支持向量机(SVM)和评估工具来验证预测的决定因素模型,并确定独立预测因子。SVM、MLP-ANN和LR模型的准确性、曲线下面积(AUC)、敏感性和特异性分别为90.4%、86.5%、98.2%和49.6%;85.9%、76.9%、97.3%和26.1%;以及84.7%、77.4%、97.5%和17.4%。同时,独立预测因子为出院时肌酐水平、受者年龄、供者年龄、供者血型、ESRD病因、移植后受者高血压以及移植前透析时间。SVM和MLP-ANN模型可有效地用于确定肾移植受者的存活预测。

相似文献

2
Predicting three-year kidney graft survival in recipients with systemic lupus erythematosus.
ASAIO J. 2011 Jul-Aug;57(4):300-9. doi: 10.1097/MAT.0b013e318222db30.
3
Seminal quality prediction using data mining methods.
Technol Health Care. 2014;22(4):531-45. doi: 10.3233/THC-140816.
5
Prediction of Kidney Graft Rejection Using Artificial Neural Network.
Healthc Inform Res. 2017 Oct;23(4):277-284. doi: 10.4258/hir.2017.23.4.277. Epub 2017 Oct 31.
6
Application of knowledge discovery process on the prediction of stroke.
Comput Methods Programs Biomed. 2015 May;119(3):181-5. doi: 10.1016/j.cmpb.2015.03.002. Epub 2015 Mar 13.
7
Machine Learning Models of Survival Prediction in Trauma Patients.
J Clin Med. 2019 Jun 5;8(6):799. doi: 10.3390/jcm8060799.

引用本文的文献

2
Predicting long-term outcomes of kidney transplantation in the era of artificial intelligence.
Sci Rep. 2023 Dec 2;13(1):21273. doi: 10.1038/s41598-023-48645-w.
3
Prediction and Detection of Cervical Malignancy Using Machine Learning Models.
Asian Pac J Cancer Prev. 2023 Apr 1;24(4):1419-1433. doi: 10.31557/APJCP.2023.24.4.1419.
6
Artificial intelligence and kidney transplantation.
World J Transplant. 2021 Jul 18;11(7):277-289. doi: 10.5500/wjt.v11.i7.277.
7
Supervised Algorithms of Machine Learning for the Prediction of Cervical Cancer.
J Biomed Phys Eng. 2020 Aug 1;10(4):513-522. doi: 10.31661/jbpe.v0i0.1912-1027. eCollection 2020 Aug.
8
Recent Advances and Clinical Outcomes of Kidney Transplantation.
J Clin Med. 2020 Apr 22;9(4):1193. doi: 10.3390/jcm9041193.
9
Promises of Big Data and Artificial Intelligence in Nephrology and Transplantation.
J Clin Med. 2020 Apr 13;9(4):1107. doi: 10.3390/jcm9041107.

本文引用的文献

1
Long-term survival of living donor renal transplants: A single center study.
Indian J Nephrol. 2010 Oct;20(4):179-84. doi: 10.4103/0971-4065.73439.
2
Donor research and matching system based on data mining in organ transplantation.
J Med Syst. 2010 Jun;34(3):251-9. doi: 10.1007/s10916-008-9236-7.
3
Predicting the graft survival for heart-lung transplantation patients: an integrated data mining methodology.
Int J Med Inform. 2009 Dec;78(12):e84-96. doi: 10.1016/j.ijmedinf.2009.04.007. Epub 2009 Jun 3.
4
Support vector machines and kernels for computational biology.
PLoS Comput Biol. 2008 Oct;4(10):e1000173. doi: 10.1371/journal.pcbi.1000173. Epub 2008 Oct 31.
5
Temporal data mining.
Clin Lab Med. 2008 Mar;28(1):83-100, vii. doi: 10.1016/j.cll.2007.10.005.
6
Predicting survival time for kidney dialysis patients: a data mining approach.
Comput Biol Med. 2005 May;35(4):311-27. doi: 10.1016/j.compbiomed.2004.02.004.
7
Prediction of delayed renal allograft function using an artificial neural network.
Nephrol Dial Transplant. 2003 Dec;18(12):2655-9. doi: 10.1093/ndt/gfg439.
8
National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification.
Ann Intern Med. 2003 Jul 15;139(2):137-47. doi: 10.7326/0003-4819-139-2-200307150-00013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验