Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK.
Genome Biol. 2008 Jan 16;9(1):R9. doi: 10.1186/gb-2008-9-1-r9.
We present a novel method that combines protein structure information with protein interaction data to identify residues that form part of an interaction interface. Our prediction method can retrieve interaction hotspots with an accuracy of 60% (at a 20% false positive rate). The method was applied to all mutations in the Online Mendelian Inheritance in Man (OMIM) database, predicting 1,428 mutations to be related to an interaction defect. Combining predicted and hand-curated sets, we discuss how mutations affect protein interactions in general.
我们提出了一种新方法,将蛋白质结构信息与蛋白质相互作用数据相结合,以识别形成相互作用界面一部分的残基。我们的预测方法可以以 60%的准确率(假阳性率为 20%)检索到相互作用热点。该方法应用于在线孟德尔遗传数据库(OMIM)中的所有突变,预测 1428 个突变与相互作用缺陷有关。结合预测和手工整理的数据集,我们讨论了突变如何普遍影响蛋白质相互作用。