King Matthew A, Hands Sarah, Hafiz Farida, Mizushima Noboru, Tolkovsky Aviva M, Wyttenbach Andreas
Southampton Neuroscience Group, School of Biological Sciences, University of Southampton. Bassett Crescent East, Southampton SO16 7PX, UK.
Mol Pharmacol. 2008 Apr;73(4):1052-63. doi: 10.1124/mol.107.043398. Epub 2008 Jan 16.
Accumulation of misfolded proteins and protein assemblies is associated with neuronal dysfunction and death in several neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease (HD). It is therefore critical to understand the molecular mechanisms of drugs that act on pathways that modulate misfolding and/or aggregation. It is noteworthy that the mammalian target of rapamycin inhibitor rapamycin or its analogs have been proposed as promising therapeutic compounds clearing toxic protein assemblies in these diseases via activation of autophagy. However, using a cellular model of HD, we found that rapamycin significantly decreased aggregation-prone polyglutamine (polyQ) and expanded huntingtin and its inclusion bodies (IB) in both autophagy-proficient and autophagy-deficient cells (by genetic knockout of the atg5 gene in mouse embryonic fibroblasts). This result suggests that rapamycin modulates the levels of misfolded polyQ proteins via pathways other than autophagy. We show that rapamycin reduces the amount of soluble polyQ protein via a modest inhibition of protein synthesis that in turn significantly reduces the formation of insoluble polyQ protein and IB formation. Hence, a modest reduction in huntingtin synthesis by rapamycin may lead to a substantial decrease in the probability of reaching the critical concentration required for a nucleation event and subsequent toxic polyQ aggregation. Thus, in addition to its beneficial effect proposed previously of reducing polyQ aggregation/toxicity via autophagic pathways, rapamycin may alleviate polyQ disease pathology via its effect on global protein synthesis. This finding may have important therapeutic implications.
在诸如阿尔茨海默病、帕金森病和亨廷顿舞蹈病(HD)等多种神经退行性疾病中,错误折叠的蛋白质和蛋白质聚集体的积累与神经元功能障碍及死亡相关。因此,了解作用于调节错误折叠和/或聚集途径的药物的分子机制至关重要。值得注意的是,雷帕霉素抑制剂雷帕霉素或其类似物已被提议作为有前景的治疗化合物,可通过激活自噬清除这些疾病中的有毒蛋白质聚集体。然而,使用HD的细胞模型,我们发现雷帕霉素在自噬功能正常和自噬缺陷的细胞中(通过基因敲除小鼠胚胎成纤维细胞中的atg5基因)均显著降低了易于聚集的多聚谷氨酰胺(polyQ)以及扩展的亨廷顿蛋白及其包涵体(IB)。这一结果表明雷帕霉素通过自噬以外的途径调节错误折叠的多聚谷氨酰胺蛋白的水平。我们表明,雷帕霉素通过适度抑制蛋白质合成来减少可溶性多聚谷氨酰胺蛋白的量,进而显著减少不溶性多聚谷氨酰胺蛋白的形成和IB的形成。因此,雷帕霉素对亨廷顿蛋白合成的适度减少可能会导致达到成核事件所需的临界浓度以及随后有毒多聚谷氨酰胺聚集的可能性大幅降低。因此,除了先前提出的通过自噬途径减少多聚谷氨酰胺聚集/毒性的有益作用外,雷帕霉素可能通过其对整体蛋白质合成的影响来减轻多聚谷氨酰胺疾病的病理。这一发现可能具有重要的治疗意义。