Juan David, Pazos Florencio, Valencia Alfonso
Structural Bioinformatics Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):934-9. doi: 10.1073/pnas.0709671105. Epub 2008 Jan 16.
Interacting or functionally related protein families tend to have similar phylogenetic trees. Based on this observation, techniques have been developed to predict interaction partners. The observed degree of similarity between the phylogenetic trees of two proteins is the result of many different factors besides the actual interaction or functional relationship between them. Such factors influence the performance of interaction predictions. One aspect that can influence this similarity is related to the fact that a given protein interacts with many others, and hence it must adapt to all of them. Accordingly, the interaction or coadaptation signal within its tree is a composite of the influence of all of the interactors. Here, we introduce a new estimator of coevolution to overcome this and other problems. Instead of relying on the individual value of tree similarity between two proteins, we use the whole network of similarities between all of the pairs of proteins within a genome to reassess the similarity of that pair, thereby taking into account its coevolutionary context. We show that this approach offers a substantial improvement in interaction prediction performance, providing a degree of accuracy/coverage comparable with, or in some cases better than, that of experimental techniques. Moreover, important information on the structure, function, and evolution of macromolecular complexes can be inferred with this methodology.
相互作用或功能相关的蛋白质家族往往具有相似的系统发育树。基于这一观察结果,人们开发了一些技术来预测相互作用伙伴。两种蛋白质的系统发育树之间观察到的相似程度是除了它们之间实际的相互作用或功能关系之外的许多不同因素的结果。这些因素会影响相互作用预测的性能。一个可能影响这种相似性的方面与这样一个事实有关,即给定的蛋白质会与许多其他蛋白质相互作用,因此它必须适应所有这些蛋白质。因此,其树状图中的相互作用或共同适应信号是所有相互作用者影响的综合体现。在这里,我们引入一种新的共进化估计器来克服这个问题以及其他问题。我们不再依赖于两种蛋白质之间树状图相似性的个体值,而是使用基因组内所有蛋白质对之间的相似性全网络来重新评估该对蛋白质的相似性,从而考虑到其共进化背景。我们表明,这种方法在相互作用预测性能方面有显著提高,提供的准确性/覆盖率与实验技术相当,在某些情况下甚至优于实验技术。此外,利用这种方法可以推断出有关大分子复合物的结构、功能和进化的重要信息。