Suppr超能文献

LKB1基因敲除小鼠在负荷过重后出现正常肥大,并伴有AMP激活的蛋白激酶α1的磷酸化和激活。

Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice.

作者信息

McGee Sean L, Mustard Kirsty J, Hardie D Grahame, Baar Keith

机构信息

Functional Molecular Biology Lab, Division of Molecular Physiology, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH, UK.

出版信息

J Physiol. 2008 Mar 15;586(6):1731-41. doi: 10.1113/jphysiol.2007.143685. Epub 2008 Jan 17.

Abstract

The activation of the AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1) is hypothesized to underlie the fact that muscle growth following resistance exercise is decreased by concurrent endurance exercise. To directly test this hypothesis, the capacity for muscle growth was determined in mice lacking the primary upstream kinase for AMPK in skeletal muscle, LKB1. Following either 1 or 4 weeks of overload, there was no difference in muscle growth between the wild type (wt) and LKB1(-/-) mice (1 week: wt, 38.8 +/- 7.75%; LKB1(-/-), 27.8 +/- 12.98%; 4 week: wt, 75.8 +/- 15.2%; LKB1(-/-), 85.0 +/- 22.6%). In spite of the fact that the LKB1 had been knocked out in skeletal muscle, the phosphorylation and activity of the alpha1 isoform of AMPK were markedly increased in both the wt and the LKB1(-/-) mice. To identify the upstream kinase(s) responsible, we studied potential upstream kinases other than LKB1. The activity of both Ca(2+)-calmodulin-dependent protein kinase kinase alpha (CaMKKalpha) (5.05 +/- 0.86-fold) and CaMKKbeta (10.1 +/- 2.59-fold) increased in the overloaded muscles, and this correlated with their increased expression. Phosphorylation of TAK-1 also increased 10-fold following overload in both the wt and LKB1 mice. Even though the alpha1 isoform of AMPK was activated by overload, there were no increases in expression of mitochondrial proteins or GLUT4, indicating that the alpha1 isoform is not involved in these metabolic adaptations. The phosphorylation of TSC2, an upstream regulator of the TORC1 pathway, at the AMPK site (Ser1345) was increased in response to overload, and this was not affected by LKB1 deficiency. Taken together, these data suggest that the alpha1 isoform of AMPK is preferentially activated in skeletal muscle following overload in the absence of metabolic adaptations, suggesting that this isoform might be important in the regulation of growth but not metabolism.

摘要

据推测,AMP激活的蛋白激酶(AMPK)的激活和雷帕霉素复合物1(mTORC1)的抑制是耐力运动同时进行会降低抗阻运动后肌肉生长这一现象的潜在原因。为了直接验证这一假设,研究人员对缺乏骨骼肌中AMPK主要上游激酶LKB1的小鼠的肌肉生长能力进行了测定。在进行1周或4周的超负荷运动后,野生型(wt)小鼠和LKB1基因敲除(LKB1(-/-))小鼠的肌肉生长情况没有差异(1周:wt,38.8±7.75%;LKB1(-/-),27.8±12.98%;4周:wt,75.8±15.2%;LKB1(-/-),85.0±22.6%)。尽管LKB1在骨骼肌中已被敲除,但wt小鼠和LKB1(-/-)小鼠中AMPKα1亚型的磷酸化和活性均显著增加。为了确定负责的上游激酶,研究人员研究了除LKB1之外的潜在上游激酶。超负荷运动的肌肉中,钙调蛋白依赖性蛋白激酶激酶α(CaMKKα)(5.05±0.86倍)和CaMKKβ(10.1±2.59倍)的活性均增加,且这与它们表达的增加相关。在wt小鼠和LKB1小鼠中,超负荷运动后TAK-1的磷酸化也增加了10倍。尽管AMPKα1亚型被超负荷运动激活,但线粒体蛋白或GLUT4的表达并未增加,这表明α1亚型不参与这些代谢适应性变化。作为TORC1途径上游调节因子的TSC2在AMPK位点(Ser1345)的磷酸化响应超负荷运动而增加,且不受LKB1缺乏的影响。综上所述,这些数据表明,在缺乏代谢适应性变化的情况下,AMPKα1亚型在骨骼肌超负荷运动后被优先激活,这表明该亚型可能在生长调节而非代谢调节中起重要作用。

相似文献

2
Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
FASEB J. 2005 Jul;19(9):1146-8. doi: 10.1096/fj.04-3144fje. Epub 2005 May 5.
4
LKB1, an upstream AMPK kinase, regulates glucose and lipid metabolism in cultured liver and muscle cells.
Biochem Biophys Res Commun. 2006 Dec 22;351(3):595-601. doi: 10.1016/j.bbrc.2006.10.056. Epub 2006 Oct 18.
5
LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1572-9. doi: 10.1152/ajpendo.00371.2007. Epub 2007 Oct 9.
6
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3329-35. doi: 10.1073/pnas.0308061100. Epub 2004 Feb 25.
7
Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice.
Am J Physiol Endocrinol Metab. 2007 Jan;292(1):E196-202. doi: 10.1152/ajpendo.00366.2006. Epub 2006 Aug 22.
8
5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle.
Am J Physiol Endocrinol Metab. 2004 Mar;286(3):E411-7. doi: 10.1152/ajpendo.00317.2003. Epub 2003 Nov 12.
9
Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes.
J Cell Biochem. 2011 May;112(5):1364-75. doi: 10.1002/jcb.23053.
10
CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle.
Mol Metab. 2023 Sep;75:101761. doi: 10.1016/j.molmet.2023.101761. Epub 2023 Jun 26.

引用本文的文献

2
Deficiency of Gene Alters the Gene Expression Profiling of Skeletal Muscle Subjected to Mechanical Overload.
Front Sports Act Living. 2019 Oct 9;1:41. doi: 10.3389/fspor.2019.00041. eCollection 2019.
4
AMP-Activated Protein Kinase as a Key Trigger for the Disuse-Induced Skeletal Muscle Remodeling.
Int J Mol Sci. 2018 Nov 12;19(11):3558. doi: 10.3390/ijms19113558.
5
The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration.
Int J Mol Sci. 2018 Oct 11;19(10):3125. doi: 10.3390/ijms19103125.
6
AMPK in skeletal muscle function and metabolism.
FASEB J. 2018 Apr;32(4):1741-1777. doi: 10.1096/fj.201700442R. Epub 2018 Jan 5.
7
Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats.
Front Physiol. 2017 Oct 26;8:830. doi: 10.3389/fphys.2017.00830. eCollection 2017.
8
Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.
Am J Physiol Cell Physiol. 2017 Sep 1;313(3):C257-C261. doi: 10.1152/ajpcell.00100.2017. Epub 2017 Jun 28.
9
Adaptations to Endurance and Strength Training.
Cold Spring Harb Perspect Med. 2018 Jun 1;8(6):a029769. doi: 10.1101/cshperspect.a029769.

本文引用的文献

1
AMP-activated protein kinase in metabolic control and insulin signaling.
Circ Res. 2007 Feb 16;100(3):328-41. doi: 10.1161/01.RES.0000256090.42690.05.
3
Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
Am J Physiol Endocrinol Metab. 2007 May;292(5):E1308-17. doi: 10.1152/ajpendo.00456.2006. Epub 2007 Jan 9.
4
Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade.
Biochem J. 2007 Apr 1;403(1):139-48. doi: 10.1042/BJ20061520.
5
Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle.
Am J Physiol Endocrinol Metab. 2007 Jan;292(1):E331-9. doi: 10.1152/ajpendo.00243.2006. Epub 2006 Sep 5.
6
Muscle IGF-I Ea, MGF, and myostatin mRNA expressions after compensatory overload in hypophysectomized rats.
Pflugers Arch. 2006 Nov;453(2):203-10. doi: 10.1007/s00424-006-0127-9. Epub 2006 Aug 29.
8
Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro.
J Biol Chem. 2006 Sep 1;281(35):25336-43. doi: 10.1074/jbc.M604399200. Epub 2006 Jul 11.
10
Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR.
Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E80-9. doi: 10.1152/ajpendo.00566.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验