Suppr超能文献

I型糖尿病发病初期的肥大刺激可维持Wistar大鼠比目鱼肌而非趾长伸肌的肌肉质量。

Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats.

作者信息

Fortes Marco A S, Scervino Maria V M, Marzuca-Nassr Gabriel N, Vitzel Kaio F, da Justa Pinheiro Carlos H, Curi Rui

机构信息

Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.

Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.

出版信息

Front Physiol. 2017 Oct 26;8:830. doi: 10.3389/fphys.2017.00830. eCollection 2017.

Abstract

Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.

摘要

糖尿病会导致骨骼肌质量和力量下降。力量训练作为治疗的一部分被推荐,因为它能改善血糖控制并促进骨骼肌质量增加。在Wistar大鼠中研究了I型糖尿病状态建立时由超负荷引起的肌肉肥大所涉及的机制。目的是检查超负荷诱导的肥大是否能抵消与糖尿病状态相关的萎缩。实验在氧化型(比目鱼肌)或糖酵解型(趾长伸肌)肌肉中进行。在比目鱼肌和趾长伸肌超负荷诱导肥大7天后,评估PI3K/Akt/mTOR蛋白合成途径。还评估了与控制肌肉肥大的不同信号通路相关基因的mRNA表达:机械转导(黏着斑激酶)、Wnt/β-连环蛋白、肌肉生长抑制素和卵泡抑素。在对照动物和糖尿病动物中,比目鱼肌和趾长伸肌在承受超负荷时具有相似的肥大反应。绝对和特定的抽搐及强直力量的增加与肌肉肥大反应幅度相同。糖尿病动物趾长伸肌的肥大除了涉及机械负荷刺激的PI3K/Akt/mTOR途径外,还包括AMP激活的蛋白激酶(AMPK)激活减少和肌肉生长抑制素表达降低。由于rpS6的更强激活以及胰岛素样生长因子-1(IGF-1)、机械生长因子(MGF)和卵泡抑素的mRNA表达增加,以及肌肉生长抑制素、肌肉泛素连接酶-1(MuRF-1)和肌肉萎缩相关基因-1(atrogin-1)含量降低,糖尿病动物比目鱼肌的肥大更为明显。这些信号变化使糖尿病大鼠的比目鱼肌质量和力量达到对照组的值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfb7/5662641/fa83518b8734/fphys-08-00830-g0001.jpg

相似文献

1
Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats.
Front Physiol. 2017 Oct 26;8:830. doi: 10.3389/fphys.2017.00830. eCollection 2017.
3
Autophagy signaling in hypertrophied muscles of diabetic and control rats.
FEBS Open Bio. 2023 Sep;13(9):1709-1722. doi: 10.1002/2211-5463.13677. Epub 2023 Jul 26.
4
Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle.
Int J Biochem Cell Biol. 2013 Nov;45(11):2444-55. doi: 10.1016/j.biocel.2013.07.019. Epub 2013 Aug 2.
8
Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation.
J Appl Physiol (1985). 2005 Feb;98(2):557-64. doi: 10.1152/japplphysiol.00811.2004. Epub 2004 Oct 1.
9
Short-term creatine supplementation changes protein metabolism signaling in hindlimb suspension.
Braz J Med Biol Res. 2019 Oct 7;52(10):e8391. doi: 10.1590/1414-431X20198391. eCollection 2019.
10
Contractile properties of EDL and soleus muscles of myostatin-deficient mice.
J Appl Physiol (1985). 2006 Sep;101(3):898-905. doi: 10.1152/japplphysiol.00126.2006. Epub 2006 May 18.

引用本文的文献

本文引用的文献

4
β-Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair.
Cell Rep. 2016 May 10;15(6):1277-90. doi: 10.1016/j.celrep.2016.04.022. Epub 2016 Apr 28.
5
Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models?
Anal Biochem. 2016 Jul 1;504:38-40. doi: 10.1016/j.ab.2016.03.023. Epub 2016 Apr 6.
6
Redox Characterization of Functioning Skeletal Muscle.
Front Physiol. 2015 Nov 18;6:338. doi: 10.3389/fphys.2015.00338. eCollection 2015.
7
Po2 cycling protects diaphragm function during reoxygenation via ROS, Akt, ERK, and mitochondrial channels.
Am J Physiol Cell Physiol. 2015 Dec 1;309(11):C759-66. doi: 10.1152/ajpcell.00174.2015. Epub 2015 Sep 30.
9
Post-translational modifications of the cardiac proteome in diabetes and heart failure.
Proteomics Clin Appl. 2016 Jan;10(1):25-38. doi: 10.1002/prca.201500052. Epub 2015 Sep 14.
10
Oxidative proteome alterations during skeletal muscle ageing.
Redox Biol. 2015 Aug;5:267-274. doi: 10.1016/j.redox.2015.05.006. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验