Jiang Hongyu, Fine Jason P, Chappell Rick
Department of Biostatistics and Center for Biostatistics in AIDS Research, Harvard University, Boston, Massachusetts 02115, USA.
Biometrics. 2005 Jun;61(2):567-75. doi: 10.1111/j.1541-0420.2005.00335.x.
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Because mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left-truncated and right-censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. First, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed-form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.
对慢性危及生命疾病的研究通常涉及死亡率和发病率。在观察性研究中,数据可能还会受到行政左截断和右删失的影响。由于死亡率和发病率可能相关,且死亡率可能会删失发病率,用于左截断和右删失数据的林登 - 贝尔估计量在估计非终末事件的边际生存函数时可能存在偏差。我们基于两个事件发生时间变量的联合模型,为该生存函数提出了一种半参数估计量,该模型在可观测数据区域采用伽马脆弱性设定。首先,我们开发了一种在左截断情况下用于伽马脆弱性参数的新型估计量。利用这个估计量,我们随后推导出非终末事件边际分布的闭式估计量。通过渐近理论确立了估计量的大样本性质。该方法在中等样本量情况下表现良好,无论是在模拟中还是在对糖尿病登记数据的分析中。