Lindquist Martin A, Zhang Cun-Hui, Glover Gary, Shepp Lawrence
Department of Statistics, Columbia University, 1255 Amsterdam Avenue, 10th Floor, MC 4690, New York, NY 10027, USA.
J Magn Reson. 2008 Mar;191(1):100-11. doi: 10.1016/j.jmr.2007.12.016. Epub 2008 Jan 3.
Functional MRI is most commonly used to study the local changes in blood flow that accompanies neuronal activity. In this work we introduce a new approach towards acquiring and analyzing fMRI data that instead provides the potential to study the initial oxygen consumption in the brain that accompanies activation. As the oxygen consumption is closer in timing to the underlying neuronal activity than the subsequent blood flow, this approach promises to provide more precise information about the location and timing of activity. Our approach is based on using a new single shot 3D echo-volumar imaging sequence which samples a small central region of 3D k-space every 100ms, thereby giving a low spatial resolution snapshot of the brain with extremely high temporal resolution. Explicit and simple rules for implementing the trajectory are provided, together with a straightforward reconstruction algorithm. Using our approach allows us to effectively study the behavior of the brain in the time immediately following activation through the initial negative BOLD response, and we discuss new techniques for detecting the presence of the negative response across the brain. The feasibility and efficiency of the approach is confirmed using data from a visual-motor task and an auditory-motor-visual task. The results of these experiments provide a proof of concept of our methodology, and indicate that rapid imaging of the initial negative BOLD response can serve an important role in studying cognition tasks involving rapid mental processing in more than one region.
功能磁共振成像(Functional MRI)最常用于研究伴随神经元活动的局部血流变化。在这项工作中,我们引入了一种获取和分析功能磁共振成像数据的新方法,该方法能够研究伴随激活的大脑初始氧消耗情况。由于氧消耗在时间上比随后的血流更接近潜在的神经元活动,这种方法有望提供有关活动位置和时间的更精确信息。我们的方法基于使用一种新的单次激发3D回波容积成像序列,该序列每100毫秒对3D k空间的一个小中心区域进行采样,从而以极高的时间分辨率给出大脑的低空间分辨率快照。文中提供了实施该轨迹的明确且简单的规则,以及一种直接的重建算法。使用我们的方法能够让我们通过初始负BOLD反应有效地研究激活后紧接着的时间内大脑的行为,并且我们讨论了用于检测全脑负反应存在的新技术。通过视觉运动任务和听觉-运动-视觉任务的数据证实了该方法的可行性和效率。这些实验结果为我们的方法提供了概念验证,并表明对初始负BOLD反应的快速成像在研究涉及多个区域快速心理处理的认知任务中可以发挥重要作用。