Suppr超能文献

用于预测卵巢癌临床行为的表达谱分析未能通过独立评估。

Expression profiling to predict the clinical behaviour of ovarian cancer fails independent evaluation.

作者信息

Gevaert Olivier, De Smet Frank, Van Gorp Toon, Pochet Nathalie, Engelen Kristof, Amant Frederic, De Moor Bart, Timmerman Dirk, Vergote Ignace

机构信息

Department of Electrical Engineering ESAT-SCD-Sista, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium.

出版信息

BMC Cancer. 2008 Jan 22;8:18. doi: 10.1186/1471-2407-8-18.

Abstract

BACKGROUND

In a previously published pilot study we explored the performance of microarrays in predicting clinical behaviour of ovarian tumours. For this purpose we performed microarray analysis on 20 patients and estimated that we could predict advanced stage disease with 100% accuracy and the response to platin-based chemotherapy with 76.92% accuracy using leave-one-out cross validation techniques in combination with Least Squares Support Vector Machines (LS-SVMs).

METHODS

In the current study we evaluate whether tumour characteristics in an independent set of 49 patients can be predicted using the pilot data set with principal component analysis or LS-SVMs.

RESULTS

The results of the principal component analysis suggest that the gene expression data from stage I, platin-sensitive advanced stage and platin-resistant advanced stage tumours in the independent data set did not correspond to their respective classes in the pilot study. Additionally, LS-SVM models built using the data from the pilot study - although they only misclassified one of four stage I tumours and correctly classified all 45 advanced stage tumours - were not able to predict resistance to platin-based chemotherapy. Furthermore, models based on the pilot data and on previously published gene sets related to ovarian cancer outcomes, did not perform significantly better than our models.

CONCLUSION

We discuss possible reasons for failure of the model for predicting response to platin-based chemotherapy and conclude that existing results based on gene expression patterns of ovarian tumours need to be thoroughly scrutinized before these results can be accepted to reflect the true performance of microarray technology.

摘要

背景

在之前发表的一项初步研究中,我们探讨了微阵列在预测卵巢肿瘤临床行为方面的表现。为此,我们对20名患者进行了微阵列分析,并估计使用留一法交叉验证技术结合最小二乘支持向量机(LS-SVM),我们能够以100%的准确率预测晚期疾病,以76.92%的准确率预测对铂类化疗的反应。

方法

在当前研究中,我们评估是否可以使用主成分分析或LS-SVM的初步数据集来预测49名患者独立组中的肿瘤特征。

结果

主成分分析结果表明,独立数据集中I期、铂敏感晚期和铂耐药晚期肿瘤的基因表达数据与初步研究中的各自类别不对应。此外,使用初步研究数据构建的LS-SVM模型——尽管它们仅将四个I期肿瘤中的一个误分类,并且正确分类了所有45个晚期肿瘤——但无法预测对铂类化疗的耐药性。此外,基于初步数据和先前发表的与卵巢癌结局相关的基因集的模型,其表现并不比我们的模型显著更好。

结论

我们讨论了预测对铂类化疗反应的模型失败的可能原因,并得出结论,在基于卵巢肿瘤基因表达模式的现有结果能够被接受以反映微阵列技术的真实性能之前,需要对这些结果进行彻底审查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0901/2259320/8671ffeec625/1471-2407-8-18-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验