Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA.
Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.
Aging (Albany NY). 2021 Apr 27;13(9):12660-12690. doi: 10.18632/aging.202940.
Ovarian cancer is a major gynaecological malignant tumor associated with a high mortality rate. Identifying survival-related variants may improve treatment and survival in patients with ovarian cancer. In this work, we proposed a support vector regression (SVR)-based method called OV-SURV, which is incorporated with an inheritable bi-objective combinatorial genetic algorithm for feature selection to identify a miRNA signature associated with survival in patients with ovarian cancer. There were 209 patients with miRNA expression profiles and survival information of ovarian cancer retrieved from The Cancer Genome Atlas database. OV-SURV achieved a mean correlation coefficient of 0.77±0.01and a mean absolute error of 0.69±0.02 years using 10-fold cross-validation. Analysis of the top ranked miRNAs revealed that the miRNAs, hsa-let-7f, hsa-miR-1237, hsa-miR-98, hsa-miR-933, and hsa-miR-889, were significantly associated with the survival in patients with ovarian cancer. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that four of these miRNAs, hsa-miR-182, hsa-miR-34a, hsa-miR-342, and hsa-miR-1304, were highly enriched in fatty acid biosynthesis, and the five miRNAs, hsa-let-7f, hsa-miR-34a, hsa-miR-342, hsa-miR-1304, and hsa-miR-24, were highly enriched in fatty acid metabolism. The prediction model with the identified miRNA signature consisting of prognostic biomarkers can benefit therapeutic decision making of ovarian cancer.
卵巢癌是一种与高死亡率相关的主要妇科恶性肿瘤。鉴定与生存相关的变异可能会改善卵巢癌患者的治疗和生存。在这项工作中,我们提出了一种基于支持向量回归(SVR)的方法,称为 OV-SURV,它结合了一种可遗传的双目标组合遗传算法,用于特征选择,以鉴定与卵巢癌患者生存相关的 miRNA 特征。从癌症基因组图谱数据库中检索到 209 名具有 miRNA 表达谱和生存信息的卵巢癌患者。OV-SURV 使用 10 倍交叉验证实现了 0.77±0.01 的平均相关系数和 0.69±0.02 年的平均绝对误差。对排名最高的 miRNAs 的分析表明,miRNA hsa-let-7f、hsa-miR-1237、hsa-miR-98、hsa-miR-933 和 hsa-miR-889 与卵巢癌患者的生存显著相关。京都基因与基因组百科全书通路分析显示,这四个 miRNA hsa-miR-182、hsa-miR-34a、hsa-miR-342 和 hsa-miR-1304 在脂肪酸生物合成中高度富集,而这五个 miRNA hsa-let-7f、hsa-miR-34a、hsa-miR-342、hsa-miR-1304 和 hsa-miR-24 在脂肪酸代谢中高度富集。由预后生物标志物组成的鉴定 miRNA 特征的预测模型可以有益于卵巢癌的治疗决策。