Suppr超能文献

POSTGRESQL-IE: an image-handling extension for PostgreSQL.

作者信息

Guliato Denise, de Melo Ernani V, Rangayyan Rangaraj M, Soares Robson C

机构信息

Faculdade de Computação, Universidade Federal de Uberlândia, Av. João Naves de Avila, 2121, 38.400-902, Minas Gerais, Brazil.

出版信息

J Digit Imaging. 2009 Apr;22(2):149-65. doi: 10.1007/s10278-007-9097-5. Epub 2008 Jan 23.

Abstract

The last decade witnessed a growing interest in research on content-based image retrieval (CBIR) and related areas. Several systems for managing and retrieving images have been proposed, each one tailored to a specific application. Functionalities commonly available in CBIR systems include: storage and management of complex data, development of feature extractors to support similarity queries, development of index structures to speed up image retrieval, and design and implementation of an intuitive graphical user interface tailored to each application. To facilitate the development of new CBIR systems, we propose an image-handling extension to the relational database management system (RDBMS) PostgreSQL. This extension, called PostgreSQL-IE, is independent of the application and provides the advantage of being open source and portable. The proposed system extends the functionalities of the structured query language SQL with new functions that are able to create new feature extraction procedures, new feature vectors as combinations of previously defined features, and new access methods, as well as to compose similarity queries. PostgreSQL-IE makes available a new image data type, which permits the association of various images with a given unique image attribute. This resource makes it possible to combine visual features of different images in the same feature vector. To validate the concepts and resources available in the proposed extended RDBMS, we propose a CBIR system applied to the analysis of mammograms using PostgreSQL-IE.

摘要

相似文献

1
POSTGRESQL-IE: an image-handling extension for PostgreSQL.
J Digit Imaging. 2009 Apr;22(2):149-65. doi: 10.1007/s10278-007-9097-5. Epub 2008 Jan 23.
2
A similarity learning approach to content-based image retrieval: application to digital mammography.
IEEE Trans Med Imaging. 2004 Oct;23(10):1233-44. doi: 10.1109/TMI.2004.834601.
3
Using an image-extended relational database to support content-based image retrieval in a PACS.
Comput Methods Programs Biomed. 2005 Dec;80 Suppl 1:S71-83. doi: 10.1016/s0169-2607(05)80008-2.
6
Content-based image retrieval in radiology: current status and future directions.
J Digit Imaging. 2011 Apr;24(2):208-22. doi: 10.1007/s10278-010-9290-9.
7
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
J Med Syst. 2018 Jan 25;42(3):44. doi: 10.1007/s10916-017-0880-7.
8
10
Learning semantic and visual similarity for endomicroscopy video retrieval.
IEEE Trans Med Imaging. 2012 Jun;31(6):1276-88. doi: 10.1109/TMI.2012.2188301. Epub 2012 Feb 16.

引用本文的文献

1
Design of a Web-tool for diagnostic clinical trials handling medical imaging research.
J Digit Imaging. 2011 Apr;24(2):196-202. doi: 10.1007/s10278-010-9304-7.
2
INDIAM--an e-learning system for the interpretation of mammograms.
J Digit Imaging. 2009 Aug;22(4):405-20. doi: 10.1007/s10278-008-9111-6. Epub 2008 Apr 19.

本文引用的文献

1
Polygonal modeling of contours of breast tumors with the preservation of spicules.
IEEE Trans Biomed Eng. 2008 Jan;55(1):14-20. doi: 10.1109/TBME.2007.899310.
2
Spiculation-preserving polygonal modeling of contours of breast tumors.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2791-4. doi: 10.1109/IEMBS.2006.260441.
3
Fractal analysis of contours of breast masses in mammograms.
J Digit Imaging. 2007 Sep;20(3):223-37. doi: 10.1007/s10278-006-0860-9.
4
Detection of breast masses in mammograms by density slicing and texture flow-field analysis.
IEEE Trans Med Imaging. 2001 Dec;20(12):1215-27. doi: 10.1109/42.974917.
5
Boundary modelling and shape analysis methods for classification of mammographic masses.
Med Biol Eng Comput. 2000 Sep;38(5):487-96. doi: 10.1007/BF02345742.
6
Measures of acutance and shape for classification of breast tumors.
IEEE Trans Med Imaging. 1997 Dec;16(6):799-810. doi: 10.1109/42.650876.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验