Suppr超能文献

基于内容的医学图像检索:现状与未来方向。

Content-based image retrieval in radiology: current status and future directions.

机构信息

Electrical and Electronics Engineering Department, Volumetric Analysis and Visualization Lab., Boğaziçi University, Istanbul, Turkey.

出版信息

J Digit Imaging. 2011 Apr;24(2):208-22. doi: 10.1007/s10278-010-9290-9.

Abstract

Diagnostic radiology requires accurate interpretation of complex signals in medical images. Content-based image retrieval (CBIR) techniques could be valuable to radiologists in assessing medical images by identifying similar images in large archives that could assist with decision support. Many advances have occurred in CBIR, and a variety of systems have appeared in nonmedical domains; however, permeation of these methods into radiology has been limited. Our goal in this review is to survey CBIR methods and systems from the perspective of application to radiology and to identify approaches developed in nonmedical applications that could be translated to radiology. Radiology images pose specific challenges compared with images in the consumer domain; they contain varied, rich, and often subtle features that need to be recognized in assessing image similarity. Radiology images also provide rich opportunities for CBIR: rich metadata about image semantics are provided by radiologists, and this information is not yet being used to its fullest advantage in CBIR systems. By integrating pixel-based and metadata-based image feature analysis, substantial advances of CBIR in medicine could ensue, with CBIR systems becoming an important tool in radiology practice.

摘要

诊断放射学需要准确解释医学图像中的复杂信号。基于内容的图像检索 (CBIR) 技术可以通过在大型档案中识别相似的图像来帮助决策支持,从而为放射科医生评估医学图像提供有价值的帮助。CBIR 已经取得了许多进展,并且已经出现了各种非医疗领域的系统;然而,这些方法在放射学中的渗透一直受到限制。我们在这篇综述中的目标是从应用于放射学的角度调查 CBIR 方法和系统,并确定可以转化为放射学的非医疗应用中开发的方法。与消费领域的图像相比,放射学图像具有特定的挑战;它们包含需要在评估图像相似性时识别的不同、丰富且通常微妙的特征。放射学图像也为 CBIR 提供了丰富的机会:放射科医生提供了有关图像语义的丰富元数据,而这些信息在 CBIR 系统中尚未得到充分利用。通过整合基于像素和基于元数据的图像特征分析,可以在医学中的 CBIR 取得重大进展,使 CBIR 系统成为放射学实践中的重要工具。

相似文献

1
Content-based image retrieval in radiology: current status and future directions.
J Digit Imaging. 2011 Apr;24(2):208-22. doi: 10.1007/s10278-010-9290-9.
2
A similarity learning approach to content-based image retrieval: application to digital mammography.
IEEE Trans Med Imaging. 2004 Oct;23(10):1233-44. doi: 10.1109/TMI.2004.834601.
4
Assessment of performance improvement in content-based medical image retrieval schemes using fractal dimension.
Acad Radiol. 2009 Oct;16(10):1171-8. doi: 10.1016/j.acra.2009.04.009. Epub 2009 Jun 12.
5
Medical image categorization and retrieval for PACS using the GMM-KL framework.
IEEE Trans Inf Technol Biomed. 2007 Mar;11(2):190-202. doi: 10.1109/titb.2006.874191.
6
Localized content-based image retrieval.
IEEE Trans Pattern Anal Mach Intell. 2008 Nov;30(11):1902-12. doi: 10.1109/TPAMI.2008.112.
7
Using relevance feedback to reduce the semantic gap in content-based image retrieval of mammographic masses.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:406-9. doi: 10.1109/IEMBS.2008.4649176.
8
Adapting content-based image retrieval techniques for the semantic annotation of medical images.
Comput Med Imaging Graph. 2016 Apr;49:37-45. doi: 10.1016/j.compmedimag.2016.01.001. Epub 2016 Feb 4.
10
Adaptive learning for relevance feedback: application to digital mammography.
Med Phys. 2010 Aug;37(8):4432-44. doi: 10.1118/1.3460839.

引用本文的文献

1
Content-Based 3D Image Retrieval and a ColBERT-Inspired Re-ranking for Tumor Flagging and Staging.
J Imaging Inform Med. 2025 Aug 27. doi: 10.1007/s10278-025-01598-0.
4
OPHash: learning of organ and pathology context-sensitive hashing for medical image retrieval.
J Med Imaging (Bellingham). 2025 Jan;12(1):017503. doi: 10.1117/1.JMI.12.1.017503. Epub 2025 Feb 19.
5
A hybrid multi-panel image segmentation framework for improved medical image retrieval system.
PLoS One. 2025 Feb 20;20(2):e0315823. doi: 10.1371/journal.pone.0315823. eCollection 2025.
6
AI co-pilot: content-based image retrieval for the reading of rare diseases in chest CT.
Sci Rep. 2023 Mar 16;13(1):4336. doi: 10.1038/s41598-023-29949-3.
7
Improving the Automatic Classification of Brain MRI Acquisition Contrast with Machine Learning.
J Digit Imaging. 2023 Feb;36(1):289-305. doi: 10.1007/s10278-022-00690-z. Epub 2022 Aug 8.
9
Outlining Big Data Analytics in Health Sector with Special Reference to Covid-19.
Wirel Pers Commun. 2022;124(3):2097-2108. doi: 10.1007/s11277-021-09446-4. Epub 2021 Dec 1.

本文引用的文献

1
Large Deformation Diffeomorphic Metric Curve Mapping.
Int J Comput Vis. 2008 Dec 1;80(3):317-336. doi: 10.1007/s11263-008-0141-9.
2
3D model retrieval using probability density-based shape descriptors.
IEEE Trans Pattern Anal Mach Intell. 2009 Jun;31(6):1117-33. doi: 10.1109/TPAMI.2009.25.
3
Localized content-based image retrieval.
IEEE Trans Pattern Anal Mach Intell. 2008 Nov;30(11):1902-12. doi: 10.1109/TPAMI.2008.112.
4
The use of magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma.
Clin Cancer Res. 2008 Apr 15;14(8):2357-62. doi: 10.1158/1078-0432.CCR-07-1964.
5
Riemannian manifold learning.
IEEE Trans Pattern Anal Mach Intell. 2008 May;30(5):796-809. doi: 10.1109/TPAMI.2007.70735.
6
Characterizing spatio-temporal patterns for disease discrimination in cardiac echo videos.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):261-9. doi: 10.1007/978-3-540-75757-3_32.
7
Shape-based matching of ECG recordings.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:2012-8. doi: 10.1109/IEMBS.2007.4352714.
8
A statistical parts-based model of anatomical variability.
IEEE Trans Med Imaging. 2007 Apr;26(4):497-508. doi: 10.1109/TMI.2007.892510.
9
Medical image categorization and retrieval for PACS using the GMM-KL framework.
IEEE Trans Inf Technol Biomed. 2007 Mar;11(2):190-202. doi: 10.1109/titb.2006.874191.
10
Computer-aided diagnosis in medical imaging: historical review, current status and future potential.
Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):198-211. doi: 10.1016/j.compmedimag.2007.02.002. Epub 2007 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验