Center for Med. Imaging & Med. Inf., Coral Gables, FL.
IEEE Trans Med Imaging. 1996;15(5):628-38. doi: 10.1109/42.538940.
Presents a knowledge-based approach for labeling two-dimensional (2-D) magnetic resonance (MR) brain images using the Boolean neural network (BNN), which has binary inputs and outputs, integer weights, fast learning and classification, and guaranteed convergence. The approach consists of two components: a BNN clustering algorithm and a constraint satisfying Boolean neural network (CSBNN) labeling procedure. The BNN clustering algorithm is developed to initially segment an image into a number of regions. Then the segmented regions are labeled with the CSBNN, which is a modified version of BNN. The CSBNN uses a knowledge base that contains information on image-feature space and tissue models as constraints. The method is tested using sets of MR brain images. The regions of the different brain tissues are satisfactorily segmented and labeled. A comparison with the Hopfield neural network and the traditional simulated annealing method for image labeling is provided. The comparison results show that the CSBNN approach offers a fast, feasible, and reliable alternative to the existing techniques for medical image labeling.
提出了一种基于知识的方法,使用布尔神经网络(BNN)对二维(2-D)磁共振(MR)脑图像进行标记,BNN 具有二进制输入和输出、整数权重、快速学习和分类以及保证收敛性。该方法由两个组件组成:BNN 聚类算法和约束满足布尔神经网络(CSBNN)标记过程。BNN 聚类算法用于将图像初始分割成若干区域。然后,使用 CSBNN 对分割区域进行标记,CSBNN 是 BNN 的一种修改版本。CSBNN 使用知识库作为约束,其中包含有关图像特征空间和组织模型的信息。该方法使用一组 MR 脑图像进行了测试。不同脑组织的区域得到了满意的分割和标记。与 Hopfield 神经网络和传统的模拟退火方法进行图像标记进行了比较。比较结果表明,CSBNN 方法为医学图像标记提供了一种快速、可行且可靠的替代现有技术的方法。