Suppr超能文献

多光谱磁共振图像的参数估计和组织分割。

Parameter estimation and tissue segmentation from multispectral MR images.

机构信息

Dept. of Radiol., State Univ. of New York, Stony Brook, NY.

出版信息

IEEE Trans Med Imaging. 1994;13(3):441-9. doi: 10.1109/42.310875.

Abstract

A statistical method is developed to classify tissue types and to segment the corresponding tissue regions from relaxation time T(1 ), T(2), and proton density P(D) weighted magnetic resonance images. The method assumes that the distribution of image intensities associated with each tissue type can be expressed as a multivariate likelihood function of three weighted signal intensity values (T(1), T(2), P(D)) at each location within that tissue regions. The method further assumes that the underlying tissue regions are piecewise contiguous and can be characterized by a Markov random field prior. In classifying the tissue types, the method models the likelihood of realizing the images as a finite multivariate-mixture function. The class parameters associated with the tissue types (i.e. the weighted intensity means, variances and correlation coefficients of the multivariate function, as well as the number of voxels within regions of the tissue types of are estimated by maximum likelihood. The estimation fits the class parameters to the image data via the expectation-maximization algorithm. The number of classes associated with the tissue types is determined by the information criterion of minimum description length. The method segments the tissue regions, given the estimated class parameters, by maximum a posteriori probability. The prior is constructed by the tissue-region membership of the first- and second-order neighborhood. The method is tested by a few sets of T(1), T(2), and P(D) weighted images of the brain acquired with a 1.5 Tesla whole body scanner. The number of classes and the associated class parameters are automatically estimated. The regions of different brain tissues are satisfactorily segmented.

摘要

一种统计方法被开发出来,用于对弛豫时间 T(1)、T(2) 和质子密度 P(D)加权磁共振图像中的组织类型进行分类,并对相应的组织区域进行分割。该方法假设与每个组织类型相关的图像强度分布可以表示为该组织区域内每个位置的三个加权信号强度值(T(1)、T(2)、P(D))的多元似然函数。该方法进一步假设基础组织区域是分段连续的,可以用马尔可夫随机场先验来描述。在对组织类型进行分类时,该方法将实现图像的似然建模为有限的多元混合函数。与组织类型相关的类参数(即多元函数的加权强度均值、方差和相关系数,以及组织类型的体素数)通过最大似然法进行估计。估计通过期望最大化算法将类参数拟合到图像数据中。与组织类型相关的类的数量由最小描述长度信息准则确定。给定估计的类参数,该方法通过最大后验概率对组织区域进行分割。该先验由一阶和二阶邻域的组织区域成员资格构建。该方法通过使用 1.5T 全身扫描仪获取的大脑 T(1)、T(2) 和 P(D)加权图像进行了测试。自动估计了类的数量和相关的类参数。不同脑组织的区域得到了满意的分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验