Algorri Maria-Elena, Flores-Mangas Fernando
Department of Digital Systems, Instituto Tecnológico Autónoma de México, Tizapán San Angel, Mexico D.F. 01000, Mexico.
IEEE Trans Biomed Eng. 2004 Sep;51(9):1599-608. doi: 10.1109/TBME.2004.827532.
We present an algorithm that automatically segments and classifies the brain structures in a set of magnetic resonance (MR) brain images using expert information contained in a small subset of the image set. The algorithm is intended to do the segmentation and classification tasks mimicking the way a human expert would reason. The algorithm uses a knowledge base taken from a small subset of semiautomatically classified images that is combined with a set of fuzzy indexes that capture the experience and expectation a human expert uses during recognition tasks. The fuzzy indexes are tissue specific and spatial specific, in order to consider the biological variations in the tissues and the acquisition inhomogeneities through the image set. The brain structures are segmented and classified one at a time. For each brain structure the algorithm needs one semiautomatically classified image and makes one pass through the image set. The algorithm uses low-level image processing techniques on a pixel basis for the segmentations, then validates or corrects the segmentations, and makes the final classification decision using higher level criteria measured by the set of fuzzy indexes. We use single-echo MR images because of their high volumetric resolution; but even though we are working with only one image per brain slice, we have multiple sources of information on each pixel: absolute and relative positions in the image, gray level value, statistics of the pixel and its three-dimensional neighborhood and relation to its counterpart pixels in adjacent images. We have validated our algorithm for ease of use and precision both with clinical experts and with measurable error indexes over a Brainweb simulated MR set.
我们提出了一种算法,该算法利用一组脑磁共振(MR)图像的小子集中包含的专家信息,对脑结构进行自动分割和分类。该算法旨在模仿人类专家的推理方式来完成分割和分类任务。该算法使用从半自动分类图像的小子集中获取的知识库,并结合一组模糊索引,这些索引捕捉了人类专家在识别任务中使用的经验和期望。模糊索引是组织特定和空间特定的,以便考虑组织中的生物学变异以及整个图像集中采集的不均匀性。脑结构一次分割和分类一个。对于每个脑结构,该算法需要一张半自动分类图像,并对图像集进行一次遍历。该算法在分割时基于像素使用低级图像处理技术,然后验证或校正分割,并使用由模糊索引集测量的高级标准做出最终分类决策。我们使用单回波MR图像是因为它们具有高体积分辨率;但是,即使我们每个脑切片只使用一张图像,我们在每个像素上仍有多个信息源:图像中的绝对和相对位置、灰度值、像素及其三维邻域的统计信息以及与相邻图像中对应像素的关系。我们已经通过临床专家以及在Brainweb模拟MR集上使用可测量的误差指标,验证了我们算法的易用性和精度。