Suppr超能文献

基于形状的多维灰度图像插值。

Shape-based interpolation of multidimensional grey-level images.

机构信息

Dept. of Radiol., Pennsylvania Univ., Philadelphia, PA.

出版信息

IEEE Trans Med Imaging. 1996;15(6):881-92. doi: 10.1109/42.544506.

Abstract

Shape-based interpolation as applied to binary images causes the interpolation process to be influenced by the shape of the object. It accomplishes this by first applying a distance transform to the data. This results in the creation of a grey-level data set in which the value at each point represents the minimum distance from that point to the surface of the object. (By convention, points inside the object are assigned positive values; points outside are assigned negative values.) This distance transformed data set is then interpolated using linear or higher-order interpolation and is then thresholded at a distance value of zero to produce the interpolated binary data set. Here, the authors describe a new method that extends shape-based interpolation to grey-level input data sets. This generalization consists of first lifting the n-dimensional (n-D) image data to represent it as a surface, or equivalently as a binary image, in an (n+1)-dimensional [(n+1)-D] space. The binary shape-based method is then applied to this image to create an (n+1)-D binary interpolated image. Finally, this image is collapsed (inverse of lifting) to create the n-D interpolated grey-level data set. The authors have conducted several evaluation studies involving patient computed tomography (CT) and magnetic resonance (MR) data as well as mathematical phantoms. They all indicate that the new method produces more accurate results than commonly used grey-level linear interpolation methods, although at the cost of increased computation.

摘要

基于形状的插值应用于二值图像会导致插值过程受到物体形状的影响。它通过首先对数据应用距离变换来实现这一点。这导致创建一个灰度数据集合,其中每个点的值表示该点到物体表面的最小距离。(根据惯例,将物体内部的点分配为正数值;将外部的点分配为负数值。)然后使用线性或更高阶插值对这个距离变换数据集进行插值,然后在距离值为零处进行阈值处理,以生成插值后的二值数据集。在这里,作者描述了一种将基于形状的插值扩展到灰度输入数据集的新方法。这种推广包括首先将 n 维(n-D)图像数据提升到(n+1)维 [(n+1)-D] 空间,以表示为表面或等价地表示为二进制图像。然后将二进制形状插值方法应用于该图像,以创建(n+1)维二进制插值图像。最后,通过折叠(提升的逆操作)来创建 n 维插值灰度数据集。作者进行了几项涉及患者计算机断层扫描(CT)和磁共振(MR)数据以及数学体模的评估研究。它们都表明,尽管计算成本增加,但新方法比常用的灰度线性插值方法产生更准确的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验