Gerardot Brian D, Brunner Daniel, Dalgarno Paul A, Ohberg Patrik, Seidl Stefan, Kroner Martin, Karrai Khaled, Stoltz Nick G, Petroff Pierre M, Warburton Richard J
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
Nature. 2008 Jan 24;451(7177):441-4. doi: 10.1038/nature06472.
The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10(4) to 10(6) spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds. Spin-echo techniques have been used to mitigate the hyperfine interaction, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this but is very difficult to realize in practice. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes, graphene quantum dots and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic p orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks that can intra-convert the spin state with the polarization of a photon.
电子的自旋是一种用于在固态中实现量子比特的天然二能级系统。对于被困在半导体量子点中的电子,强量子限制极大地抑制了与声子相关的自旋弛豫的有害影响。然而,这一优势被量子点中电子自旋与宿主原子核的10⁴至10⁶个自旋之间的超精细相互作用所抵消。核自旋系综中的随机涨落导致在大约十纳秒内快速的自旋退相干。自旋回波技术已被用于减轻超精细相互作用,但完全消除这种影响更具吸引力。原则上,极化所有核自旋可以实现这一点,但在实践中很难实现。探索具有零自旋原子核的材料是另一种选择,碳纳米管、石墨烯量子点和硅已被提出。另一种选择是使用半导体空穴。与电子不同,量子点中的价空穴具有原子p轨道,该轨道在所有原子核的位置方便地变为零,从而极大地抑制了与核自旋的相互作用。此外,在具有强应变和强量子化的量子点中,自旋为3/2的重空穴表现为自旋为1/2的系统,并且自旋退相干机制较弱。我们在此展示了通过光泵浦对限制在自组装量子点中的单个空穴自旋进行高保真度(约99%)初始化。我们的方案即使在零磁场下也能工作,表明空穴自旋超精细相互作用可忽略不计。我们确定了低场下空穴自旋弛豫时间约为一毫秒。这些结果为实现能够将自旋态与光子极化进行相互转换的固态量子网络提供了一条途径。