Dusanowski Łukasz, Nawrath Cornelius, Portalupi Simone L, Jetter Michael, Huber Tobias, Klembt Sebastian, Michler Peter, Höfling Sven
Technische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, Physikalisches Institut and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, University of Würzburg, Würzburg, Germany.
Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.
Nat Commun. 2022 Feb 8;13(1):748. doi: 10.1038/s41467-022-28328-2.
Solid-state quantum emitters with manipulable spin-qubits are promising platforms for quantum communication applications. Although such light-matter interfaces could be realized in many systems only a few allow for light emission in the telecom bands necessary for long-distance quantum networks. Here, we propose and implement an optically active solid-state spin-qubit based on a hole confined in a single InAs/GaAs quantum dot grown on an InGaAs metamorphic buffer layer emitting photons in the C-band. We lift the hole spin-degeneracy using an external magnetic field and demonstrate hole injection, initialization, read-out and complete coherent control using picosecond optical pulses. These results showcase a solid-state spin-qubit platform compatible with preexisting optical fiber networks.
具有可操控自旋量子比特的固态量子发射器是量子通信应用中很有前景的平台。尽管这种光与物质的界面可以在许多系统中实现,但只有少数系统能够在长距离量子网络所需的电信频段发光。在此,我们提出并实现了一种基于限制在单个InAs/GaAs量子点中的空穴的光学活性固态自旋量子比特,该量子点生长在InGaAs变质缓冲层上,在C波段发射光子。我们利用外部磁场消除空穴自旋简并,并展示了使用皮秒光脉冲进行空穴注入、初始化、读出和完全相干控制。这些结果展示了一个与现有光纤网络兼容的固态自旋量子比特平台。