Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
Institut Lumière Matière (ILM), UMR5306 Université Lyon 1/CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France.
Nat Mater. 2016 Sep;15(9):981-6. doi: 10.1038/nmat4704. Epub 2016 Jul 25.
A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform.
目前正在进行一项巨大的努力,以开发半导体纳米结构作为qubit 的低噪声宿主。基于 GaAs 的系统中电子自旋 qubit 退相的主要来源是核自旋浴。孔自旋可以规避核自旋噪声。原则上,可以为纯重空穴自旋关闭核自旋。实际上,尚不清楚可以在多大程度上实现这种理想极限。一个主要的障碍是 p 型器件通常噪声太大。我们在这里研究了嵌入在新一代低噪声 p 型器件中的 InGaAs 量子点中的单个空穴自旋。通过暗态光谱,我们在横向磁场中以 10neV 的分辨率测量了空穴塞曼能量,同时我们创建了大的横向核自旋极化。空穴超精细相互作用具有很强的各向异性:横向耦合仅为纵向耦合的<1%。对于非极化的、随机波动的核,实现了理想的重空穴极限,能量低至纳电子伏特;等效的退相时间长达微秒。大而强的光学偶极子的组合使得基于 GaAs 的器件中的单个空穴自旋成为有吸引力的量子平台。