Suppr超能文献

MRI 数据集上脑轮廓的自动检测。

Automatic detection of brain contours in MRI data sets.

机构信息

Dept. of Radiol., Emory Univ. Sch. of Med., Atlanta, GA.

出版信息

IEEE Trans Med Imaging. 1993;12(2):153-66. doi: 10.1109/42.232244.

Abstract

A software procedure is presented for fully automated detection of brain contours from single-echo 3-D MRI data, developed initially for scans with coronal orientation. The procedure detects structures in a head data volume in a hierarchical fashion. Automatic detection starts with a histogram-based thresholding step, whenever necessary preceded by an image intensity correction procedure. This step is followed by a morphological procedure which refines the binary threshold mask images. Anatomical knowledge, essential for the discrimination between desired and undesired structures, is implemented in this step through a sequence of conventional and novel morphological operations, using 2-D and 3-D operations. A final step of the procedure performs overlap tests on candidate brain regions of interest in neighboring slice images to propagate coherent 2-D brain masks through the third dimension. Results are presented for test runs of the procedure on 23 coronal whole-brain data sets, and one sagittal whole-brain data set. Finally, the potential of the technique for generalization to other problems is discussed, as well as limitations of the technique.

摘要

介绍了一种从单回波 3-D MRI 数据全自动检测脑轮廓的软件程序,该程序最初是为冠状方向的扫描而开发的。该程序以分层的方式在头部数据体中检测结构。自动检测从基于直方图的阈值处理步骤开始,在必要时,该步骤之前先进行图像强度校正步骤。然后,该步骤通过一系列传统和新颖的形态学操作来细化二进制阈值掩模图像,这些操作使用 2-D 和 3-D 操作,实现了区分所需和非所需结构的解剖学知识。该程序的最后一步对相邻切片图像中的候选脑感兴趣区域执行重叠测试,以便通过第三维传播连贯的 2-D 脑掩模。介绍了该程序在 23 个冠状全脑数据集和 1 个矢状全脑数据集上的测试运行结果。最后,讨论了该技术推广到其他问题的潜力以及该技术的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验