文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MRI 数据集上脑轮廓的自动检测。

Automatic detection of brain contours in MRI data sets.

机构信息

Dept. of Radiol., Emory Univ. Sch. of Med., Atlanta, GA.

出版信息

IEEE Trans Med Imaging. 1993;12(2):153-66. doi: 10.1109/42.232244.


DOI:10.1109/42.232244
PMID:18218403
Abstract

A software procedure is presented for fully automated detection of brain contours from single-echo 3-D MRI data, developed initially for scans with coronal orientation. The procedure detects structures in a head data volume in a hierarchical fashion. Automatic detection starts with a histogram-based thresholding step, whenever necessary preceded by an image intensity correction procedure. This step is followed by a morphological procedure which refines the binary threshold mask images. Anatomical knowledge, essential for the discrimination between desired and undesired structures, is implemented in this step through a sequence of conventional and novel morphological operations, using 2-D and 3-D operations. A final step of the procedure performs overlap tests on candidate brain regions of interest in neighboring slice images to propagate coherent 2-D brain masks through the third dimension. Results are presented for test runs of the procedure on 23 coronal whole-brain data sets, and one sagittal whole-brain data set. Finally, the potential of the technique for generalization to other problems is discussed, as well as limitations of the technique.

摘要

介绍了一种从单回波 3-D MRI 数据全自动检测脑轮廓的软件程序,该程序最初是为冠状方向的扫描而开发的。该程序以分层的方式在头部数据体中检测结构。自动检测从基于直方图的阈值处理步骤开始,在必要时,该步骤之前先进行图像强度校正步骤。然后,该步骤通过一系列传统和新颖的形态学操作来细化二进制阈值掩模图像,这些操作使用 2-D 和 3-D 操作,实现了区分所需和非所需结构的解剖学知识。该程序的最后一步对相邻切片图像中的候选脑感兴趣区域执行重叠测试,以便通过第三维传播连贯的 2-D 脑掩模。介绍了该程序在 23 个冠状全脑数据集和 1 个矢状全脑数据集上的测试运行结果。最后,讨论了该技术推广到其他问题的潜力以及该技术的局限性。

相似文献

[1]
Automatic detection of brain contours in MRI data sets.

IEEE Trans Med Imaging. 1993

[2]
The creation of a brain atlas for image guided neurosurgery using serial histological data.

Neuroimage. 2006-4-1

[3]
Automatic brain extraction methods for T1 magnetic resonance images using region labeling and morphological operations.

Comput Biol Med. 2011-7-2

[4]
Stereotactic radiation treatment planning and follow-up studies involving fused multimodality imaging.

J Neurosurg. 2004-11

[5]
Automatic 3-D breath-hold related motion correction of dynamic multislice MRI.

IEEE Trans Med Imaging. 2010-3

[6]
Fully automatic segmentation of the brain in MRI.

IEEE Trans Med Imaging. 1998-2

[7]
Automatic contour definition on left ventriculograms by image evidence and a multiple template-based model.

IEEE Trans Med Imaging. 1989

[8]
Fully automatic identification of AC and PC landmarks on brain MRI using scene analysis.

IEEE Trans Med Imaging. 1997-10

[9]
Adaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.

IEEE Trans Biomed Eng. 2005-6

[10]
Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI.

IEEE Trans Med Imaging. 1996

引用本文的文献

[1]
Automated neonatal nnU-Net brain MRI extractor trained on a large multi-institutional dataset.

Sci Rep. 2024-2-26

[2]
A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network.

Sci Rep. 2022-6-27

[3]
Performance Improvement in Brain Tumor Detection in MRI Images Using a Combination of Evolutionary Algorithms and Active Contour Method.

J Digit Imaging. 2021-10

[4]
State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms.

J Digit Imaging. 2020-12

[5]
Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri).

Front Neuroinform. 2019-6-4

[6]
Assessment of neonatal brain volume and growth at different postmenstrual ages by conventional MRI.

Medicine (Baltimore). 2018-8

[7]
On the Expectation-Maximization Algorithm for Rice-Rayleigh Mixtures With Application to Noise Parameter Estimation in Magnitude MR Datasets.

Sankhya B (2008). 2013-11

[8]
INFOS: spectrum fitting software for NMR analysis.

J Biomol NMR. 2017-2

[9]
A partial differential equation-based general framework adapted to Rayleigh's, Rician's and Gaussian's distributed noise for restoration and enhancement of magnetic resonance image.

J Med Phys. 2016

[10]
Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images.

Brain Inform. 2016-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索