Suppr超能文献

最大似然法、最小二乘法和惩罚最小二乘法在正电子发射断层扫描中的应用。

Maximum likelihood, least squares, and penalized least squares for PET.

机构信息

AT&T Bell Lab., Murray Hill, NJ.

出版信息

IEEE Trans Med Imaging. 1993;12(2):200-14. doi: 10.1109/42.232249.

Abstract

The EM algorithm is the basic approach used to maximize the log likelihood objective function for the reconstruction problem in positron emission tomography (PET). The EM algorithm is a scaled steepest ascent algorithm that elegantly handles the nonnegativity constraints of the problem. It is shown that the same scaled steepest descent algorithm can be applied to the least squares merit function, and that it can be accelerated using the conjugate gradient approach. The experiments suggest that one can cut the computation by about a factor of 3 by using this technique. The results are applied to various penalized least squares functions which might be used to produce a smoother image.

摘要

EM 算法是用于最大化正电子发射断层扫描 (PET) 重建问题中对数似然目标函数的基本方法。EM 算法是一种缩放的最陡上升算法,它巧妙地处理了问题的非负约束。结果表明,可以将相同的缩放最陡下降算法应用于最小二乘优点函数,并且可以使用共轭梯度方法来加速它。实验表明,通过使用这种技术,计算量可以减少约三分之一。结果应用于各种可能用于生成更平滑图像的惩罚最小二乘函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验