Suppr超能文献

通过机器学习从先前的全剂量扫描构建组织特异性纹理先验,用于当前超低剂量CT图像的贝叶斯重建。

Constructing a tissue-specific texture prior by machine learning from previous full-dose scan for Bayesian reconstruction of current ultralow-dose CT images.

作者信息

Gao Yongfeng, Tan Jiaxing, Shi Yongyi, Lu Siming, Gupta Amit, Li Haifang, Liang Zhengrong

机构信息

State University of New York, Department of Radiology, Stony Brook, New York, United States.

State University of New York, Department of Biomedical Engineering, Stony Brook, New York, United States.

出版信息

J Med Imaging (Bellingham). 2020 May;7(3):032502. doi: 10.1117/1.JMI.7.3.032502. Epub 2020 Feb 25.

Abstract

: Bayesian theory provides a sound framework for ultralow-dose computed tomography (ULdCT) image reconstruction with two terms for modeling the data statistical property and incorporating knowledge for the image that is to be reconstructed. We investigate the feasibility of using a machine learning (ML) strategy, particularly the convolutional neural network (CNN), to construct a tissue-specific texture prior from previous full-dose computed tomography. Our study constructs four tissue-specific texture priors, corresponding with lung, bone, fat, and muscle, and integrates the prior with the prelog shift Poisson (SP) data property for Bayesian reconstruction of ULdCT images. The Bayesian reconstruction was implemented by an algorithm called SP-CNN-T and compared with our previous Markov random field (MRF)-based tissue-specific texture prior algorithm called SP-MRF-T. : In addition to conventional quantitative measures, mean squared error and peak signal-to-noise ratio, structure similarity index, feature similarity, and texture Haralick features were used to measure the performance difference between SP-CNN-T and SP-MRF-T algorithms in terms of the structure and tissue texture preservation, demonstrating the feasibility and the potential of the investigated ML approach. : Both training performance and image reconstruction results showed the feasibility of constructing CNN texture prior model and the potential of improving the structure preservation of the nodule comparing to our previous regional tissue-specific MRF texture prior model.

摘要

贝叶斯理论为超低剂量计算机断层扫描(ULdCT)图像重建提供了一个合理的框架,其中有两个项用于对数据统计特性进行建模,并纳入待重建图像的相关知识。我们研究了使用机器学习(ML)策略,特别是卷积神经网络(CNN),从先前的全剂量计算机断层扫描构建组织特异性纹理先验的可行性。我们的研究构建了四种与肺、骨、脂肪和肌肉相对应的组织特异性纹理先验,并将该先验与预对数移位泊松(SP)数据特性相结合,用于ULdCT图像的贝叶斯重建。贝叶斯重建通过一种名为SP-CNN-T的算法实现,并与我们之前基于马尔可夫随机场(MRF)的组织特异性纹理先验算法SP-MRF-T进行比较。除了传统的定量测量方法,即均方误差和峰值信噪比外,还使用结构相似性指数、特征相似性和纹理哈氏特征来衡量SP-CNN-T和SP-MRF-T算法在结构和组织纹理保留方面的性能差异,证明了所研究的ML方法的可行性和潜力。训练性能和图像重建结果均显示了构建CNN纹理先验模型的可行性,以及与我们之前的区域组织特异性MRF纹理先验模型相比,在改善结节结构保留方面的潜力。

相似文献

2
Characterization of tissue-specific pre-log Bayesian CT reconstruction by texture-dose relationship.
Med Phys. 2020 Oct;47(10):5032-5047. doi: 10.1002/mp.14449. Epub 2020 Sep 5.
4
Extracting Information From Previous Full-Dose CT Scan for Knowledge-Based Bayesian Reconstruction of Current Low-Dose CT Images.
IEEE Trans Med Imaging. 2016 Mar;35(3):860-70. doi: 10.1109/TMI.2015.2498148. Epub 2015 Nov 6.
5
Machine Learned Texture Prior From Full-Dose CT Database via Multi-Modality Feature Selection for Bayesian Reconstruction of Low-Dose CT.
IEEE Trans Med Imaging. 2023 Nov;42(11):3129-3139. doi: 10.1109/TMI.2021.3139533. Epub 2023 Oct 27.
6
Spectral CT Reconstruction via Low-Rank Representation and Region-Specific Texture Preserving Markov Random Field Regularization.
IEEE Trans Med Imaging. 2020 Oct;39(10):2996-3007. doi: 10.1109/TMI.2020.2983414. Epub 2020 Mar 26.
7
A Task-dependent Investigation on Dose and Texture in CT Image Reconstruction.
IEEE Trans Radiat Plasma Med Sci. 2020 Jul;4(4):441-449. doi: 10.1109/trpms.2019.2957459. Epub 2019 Dec 4.

引用本文的文献

1
Learned Tensor Neural Network Texture Prior for Photon-Counting CT Reconstruction.
IEEE Trans Med Imaging. 2024 Nov;43(11):3830-3842. doi: 10.1109/TMI.2024.3402079. Epub 2024 Nov 4.
2
Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms.
Vis Comput Ind Biomed Art. 2022 Dec 9;5(1):30. doi: 10.1186/s42492-022-00127-y.
3
Bilateral Weighted Relative Total Variation for Low-Dose CT Reconstruction.
J Digit Imaging. 2023 Apr;36(2):458-467. doi: 10.1007/s10278-022-00720-w. Epub 2022 Nov 28.
4
Artificial Intelligence in Radiation Therapy.
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):158-181. doi: 10.1109/TRPMS.2021.3107454. Epub 2021 Aug 24.
5
Machine Learned Texture Prior From Full-Dose CT Database via Multi-Modality Feature Selection for Bayesian Reconstruction of Low-Dose CT.
IEEE Trans Med Imaging. 2023 Nov;42(11):3129-3139. doi: 10.1109/TMI.2021.3139533. Epub 2023 Oct 27.

本文引用的文献

2
Optimizing a Parameterized Plug-and-Play ADMM for Iterative Low-Dose CT Reconstruction.
IEEE Trans Med Imaging. 2019 Feb;38(2):371-382. doi: 10.1109/TMI.2018.2865202. Epub 2018 Aug 13.
3
Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.
IEEE Trans Med Imaging. 2018 Jun;37(6):1348-1357. doi: 10.1109/TMI.2018.2827462.
4
LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT.
IEEE Trans Med Imaging. 2018 Jun;37(6):1333-1347. doi: 10.1109/TMI.2018.2805692.
6
Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.
IEEE Trans Med Imaging. 2017 Dec;36(12):2466-2478. doi: 10.1109/TMI.2017.2759819. Epub 2017 Oct 5.
7
Hybrid Pre-Log and Post-Log Image Reconstruction for Computed Tomography.
IEEE Trans Med Imaging. 2017 Dec;36(12):2457-2465. doi: 10.1109/TMI.2017.2751679. Epub 2017 Sep 13.
8
Radiation Dose Reduction in CT Myocardial Perfusion Imaging Using SMART-RECON.
IEEE Trans Med Imaging. 2017 Dec;36(12):2557-2568. doi: 10.1109/TMI.2017.2747521. Epub 2017 Aug 30.
9
Deep Convolutional Neural Network for Inverse Problems in Imaging.
IEEE Trans Image Process. 2017 Sep;26(9):4509-4522. doi: 10.1109/TIP.2017.2713099. Epub 2017 Jun 15.
10
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验