Suppr超能文献

用于动态PET成像的稀疏/低秩约束重建

Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging.

作者信息

Yu Xingjian, Chen Shuhang, Hu Zhenghui, Liu Meng, Chen Yunmei, Shi Pengcheng, Liu Huafeng

机构信息

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

Department of Mathematics, University of Florida, Gainesville, Florida, United States of America.

出版信息

PLoS One. 2015 Nov 5;10(11):e0142019. doi: 10.1371/journal.pone.0142019. eCollection 2015.

Abstract

In dynamic Positron Emission Tomography (PET), an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets.

摘要

在动态正电子发射断层扫描(PET)中,放射性活度浓度的估计值是根据一系列按一定标准采集的、持续时间从10秒到数分钟不等的正弦图数据帧获得的。到目前为止,所有著名的重建算法都需要已知的数据统计特性。这限制了数据采集的速度,此外,对于某些应用中的诊断需求,它无法提供有关结构以及形状和代谢率变化的单独信息,而这些信息在提高对比度可视化方面起着重要作用。本文提出了一种基于低秩的动态PET发射正弦图活动图重建新方案,称为SLCR,即动态PET成像的稀疏/低秩约束重建。在该方法中,静止背景被建模为低秩分量,而连续帧之间的变化被抽象为稀疏分量。由此产生的与核范数和l1范数相关的最小化问题也可以通过许多最近开发的数值方法有效地解决。本文应用了线性化交替方向法。在三个数据集上展示了所提方案的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deb6/4634927/1fd0fdc2ce6b/pone.0142019.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验