Dept. of Radio., Michigan Univ. Med. Sch., Ann Arbor, MI.
IEEE Trans Med Imaging. 1993;12(2):361-5. doi: 10.1109/42.232267.
The usefulness of statistical clustering algorithms developed for automatic segmentation of lesions and organs in magnetic resonance imaging (MRI) intensity data sets suffers from spatial nonstationarities introduced into the data sets by the acquisition instrumentation. The major intensity inhomogeneity in MRI is caused by variations in the B1-field of the radio frequency (RF) coil. A three-step method was developed to model and then reduce the effect. Using a least squares formulation, the inhomogeneity is modeled as a maximum variation order two polynomial. In the log domain the polynomial model is subtracted from the actual patient data set resulting in a compensated data set. The compensated data set is exponentiated and rescaled. Statistical comparisons indicate volumes of significant corruption undergo a large reduction in the inhomogeneity, whereas volumes of minimal corruption are not significantly changed. Acting as a preprocessor, the proposed technique can enhance the role of statistical segmentation algorithms in body MRI data sets.
统计聚类算法在磁共振成像(MRI)强度数据集自动分割病变和器官方面非常有用,但这些算法受到采集仪器引入的数据集中空间非平稳性的影响。MRI 中的主要强度不均匀性是由射频(RF)线圈 B1 场的变化引起的。开发了一种三步法来对其建模,然后降低其影响。使用最小二乘法,将非均匀性建模为二阶最大变化多项式。在对数域中,从实际患者数据集减去多项式模型,得到补偿数据集。对补偿数据集进行指数化和重新缩放。统计比较表明,受显著干扰的体积在非均匀性方面有很大的减少,而受最小干扰的体积则没有明显变化。作为预处理,所提出的技术可以增强统计分割算法在身体 MRI 数据集的作用。