Suppr超能文献

磁共振成像分割中自适应模糊C均值算法在特征空间中的体积与形状

Volume and shape in feature space on adaptive FCM in MRI segmentation.

作者信息

He Renjie, Sajja Balasrinivasa Rao, Datta Sushmita, Narayana Ponnada A

机构信息

Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA.

出版信息

Ann Biomed Eng. 2008 Sep;36(9):1580-93. doi: 10.1007/s10439-008-9520-1. Epub 2008 Jun 24.

Abstract

Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.

摘要

强度非均匀性(偏差场)校正、对空间强度分布的上下文约束以及特征空间中非球形聚类的形状被纳入模糊 c 均值(FCM)算法中,用于三维多光谱磁共振图像的分割。偏差场通过平滑多项式基函数的线性组合进行建模,以便在聚类迭代中进行快速计算。将强度或隶属度的邻域连续性正则化项添加到 FCM 代价函数中。由于特征空间不是各向同性的,因此使用欧几里得距离以外的距离度量来考虑特征空间中聚类的形状和体积效应。通过将自适应 FCM 方案与 Gustafson-Kessel(G-K)和 Gath-Geva(G-G)算法中使用的准则相结合,并纳入聚类散射度量,提高了分割性能。使用相似性度量在正常脑磁共振图像上对这种集成方法的性能进行了定量评估。通过将我们的结果与 FSL(FMRIB 软件库)产生的结果进行比较,也证明了我们的方法在分割质量上的提高,FSL 是一个常用于组织分类的数据处理软件包。

相似文献

1
Volume and shape in feature space on adaptive FCM in MRI segmentation.
Ann Biomed Eng. 2008 Sep;36(9):1580-93. doi: 10.1007/s10439-008-9520-1. Epub 2008 Jun 24.
2
Generalized fuzzy clustering for segmentation of multi-spectral magnetic resonance images.
Comput Med Imaging Graph. 2008 Jul;32(5):353-66. doi: 10.1016/j.compmedimag.2008.02.002. Epub 2008 Apr 2.
3
A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):200-211. doi: 10.1080/24699322.2017.1389398. Epub 2017 Oct 26.
4
Brain Tissue Segmentation and Bias Field Correction of MR Image Based on Spatially Coherent FCM with Nonlocal Constraints.
Comput Math Methods Med. 2019 Mar 3;2019:4762490. doi: 10.1155/2019/4762490. eCollection 2019.
5
Adaptive FCM with contextual constrains for segmentation of multi-spectral MRI.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1660-3. doi: 10.1109/IEMBS.2004.1403501.
7
A Novel Type-2 Fuzzy C-Means Clustering for Brain MR Image Segmentation.
IEEE Trans Cybern. 2021 Aug;51(8):3901-3912. doi: 10.1109/TCYB.2020.2994235. Epub 2021 Aug 4.
9
Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure.
IEEE Trans Syst Man Cybern B Cybern. 2004 Aug;34(4):1907-16. doi: 10.1109/tsmcb.2004.831165.
10
Enhanced Spatial Fuzzy C-Means Algorithm for Brain Tissue Segmentation in T1 Images.
Neuroinformatics. 2024 Oct;22(4):407-420. doi: 10.1007/s12021-024-09661-x. Epub 2024 Apr 24.

引用本文的文献

1
Cooperative strategy for a dynamic ensemble of classification models in clinical applications: the case of MRI vertebral compression fractures.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1971-1983. doi: 10.1007/s11548-017-1625-2. Epub 2017 Jun 14.
2
Segmentation of biomedical images using active contour model with robust image feature and shape prior.
Int J Numer Method Biomed Eng. 2014 Feb;30(2):232-48. doi: 10.1002/cnm.2600. Epub 2013 Oct 28.
3
Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data.
J Magn Reson Imaging. 2010 Nov;32(5):1197-208. doi: 10.1002/jmri.22344.
4
Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching.
BMC Med Inform Decis Mak. 2009 Nov 3;9 Suppl 1(Suppl 1):S4. doi: 10.1186/1472-6947-9-S1-S4.

本文引用的文献

1
A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms.
IEEE Trans Pattern Anal Mach Intell. 1980 Jan;2(1):1-8. doi: 10.1109/tpami.1980.4766964.
2
Multispectral analysis of the brain using magnetic resonance imaging.
IEEE Trans Med Imaging. 1994;13(3):470-81. doi: 10.1109/42.310878.
3
Correction of intensity variations in MR images for computer-aided tissue classification.
IEEE Trans Med Imaging. 1993;12(4):770-81. doi: 10.1109/42.251128.
4
Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI.
IEEE Trans Med Imaging. 1993;12(2):361-5. doi: 10.1109/42.232267.
5
Adaptive FCM with contextual constrains for segmentation of multi-spectral MRI.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1660-3. doi: 10.1109/IEMBS.2004.1403501.
6
Unified approach for multiple sclerosis lesion segmentation on brain MRI.
Ann Biomed Eng. 2006 Jan;34(1):142-51. doi: 10.1007/s10439-005-9009-0. Epub 2006 Mar 9.
7
The measurement and clinical relevance of brain atrophy in multiple sclerosis.
Lancet Neurol. 2006 Feb;5(2):158-70. doi: 10.1016/S1474-4422(06)70349-0.
9
Magnetic resonance imaging monitoring of multiple sclerosis lesion evolution.
J Neuroimaging. 2005;15(4 Suppl):22S-29S. doi: 10.1177/1051228405282243.
10
Implementation of high-dimensional feature map for segmentation of MR images.
Ann Biomed Eng. 2005 Oct;33(10):1439-48. doi: 10.1007/s10439-005-5888-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验