Suppr超能文献

基于特征的医学成像数据融合。

Feature-based fusion of medical imaging data.

作者信息

Calhoun Vince D, Adali Tülay

机构信息

Mind Research Network and Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2009 Sep;13(5):711-20. doi: 10.1109/TITB.2008.923773. Epub 2008 Apr 22.

Abstract

The acquisition of multiple brain imaging types for a given study is a very common practice. There have been a number of approaches proposed for combining or fusing multitask or multimodal information. These can be roughly divided into those that attempt to study convergence of multimodal imaging, for example, how function and structure are related in the same region of the brain, and those that attempt to study the complementary nature of modalities, for example, utilizing temporal EEG information and spatial functional magnetic resonance imaging information. Within each of these categories, one can attempt data integration (the use of one imaging modality to improve the results of another) or true data fusion (in which multiple modalities are utilized to inform one another). We review both approaches and present a recent computational approach that first preprocesses the data to compute features of interest. The features are then analyzed in a multivariate manner using independent component analysis. We describe the approach in detail and provide examples of how it has been used for different fusion tasks. We also propose a method for selecting which combination of modalities provides the greatest value in discriminating groups. Finally, we summarize and describe future research topics.

摘要

在特定研究中获取多种脑成像类型是一种非常常见的做法。已经提出了许多用于组合或融合多任务或多模态信息的方法。这些方法大致可分为两类:一类试图研究多模态成像的收敛性,例如,大脑同一区域的功能和结构是如何相关的;另一类试图研究模态的互补性,例如,利用脑电图的时间信息和功能磁共振成像的空间信息。在每一类中,人们可以尝试数据整合(使用一种成像模态来改进另一种成像模态的结果)或真正的数据融合(利用多种模态相互提供信息)。我们回顾了这两种方法,并介绍了一种最近的计算方法,该方法首先对数据进行预处理以计算感兴趣的特征。然后使用独立成分分析以多变量方式分析这些特征。我们详细描述了该方法,并提供了其如何用于不同融合任务的示例。我们还提出了一种方法,用于选择哪种模态组合在区分组时提供最大价值。最后,我们总结并描述了未来的研究主题。

相似文献

1
Feature-based fusion of medical imaging data.
IEEE Trans Inf Technol Biomed. 2009 Sep;13(5):711-20. doi: 10.1109/TITB.2008.923773. Epub 2008 Apr 22.
2
Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI.
Neuroimage. 2010 May 1;50(4):1438-45. doi: 10.1016/j.neuroimage.2010.01.062. Epub 2010 Jan 25.
3
Cross multivariate correlation coefficients as screening tool for analysis of concurrent EEG-fMRI recordings.
J Neurosci Res. 2018 Jul;96(7):1159-1175. doi: 10.1002/jnr.24217. Epub 2018 Feb 6.
4
Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery.
Neuroimage. 2014 Oct 1;99:28-41. doi: 10.1016/j.neuroimage.2014.05.029. Epub 2014 May 20.
5
Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks.
Brain Topogr. 2010 Jun;23(2):150-8. doi: 10.1007/s10548-009-0132-3. Epub 2010 Jan 6.
6
Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG.
IEEE Rev Biomed Eng. 2008;1(2008):23-40. doi: 10.1109/RBME.2008.2008233. Epub 2008 Nov 5.
8
EEG/fMRI fusion based on independent component analysis: integration of data-driven and model-driven methods.
J Integr Neurosci. 2012 Sep;11(3):313-37. doi: 10.1142/S0219635212500203. Epub 2012 Sep 17.
9
Time-frequency analysis of resting state and evoked EEG data recorded at higher magnetic fields up to 9.4 T.
J Neurosci Methods. 2015 Nov 30;255:1-11. doi: 10.1016/j.jneumeth.2015.07.011. Epub 2015 Jul 23.
10
Multimodal functional network connectivity: an EEG-fMRI fusion in network space.
PLoS One. 2011;6(9):e24642. doi: 10.1371/journal.pone.0024642. Epub 2011 Sep 22.

引用本文的文献

1
SAFFusion: a saliency-aware frequency fusion network for multimodal medical image fusion.
Biomed Opt Express. 2025 May 27;16(6):2459-2481. doi: 10.1364/BOE.555458. eCollection 2025 Jun 1.
2
Fast and accurate RFD-like descriptor approximation for SIMD architectures.
Sci Rep. 2025 Jul 4;15(1):23963. doi: 10.1038/s41598-025-09963-3.
5
Co-methylation networks associated with cognition and structural brain development during adolescence.
Front Genet. 2025 Jan 7;15:1451150. doi: 10.3389/fgene.2024.1451150. eCollection 2024.
9
A novel biomarker selection method using multimodal neuroimaging data.
PLoS One. 2024 Apr 4;19(4):e0289401. doi: 10.1371/journal.pone.0289401. eCollection 2024.
10
The network characteristics in schizophrenia with prominent negative symptoms: a multimodal fusion study.
Schizophrenia (Heidelb). 2024 Jan 17;10(1):10. doi: 10.1038/s41537-023-00408-2.

本文引用的文献

1
The growth of human brain mapping.
Hum Brain Mapp. 1997;5(1):1-2. doi: 10.1002/(SICI)1097-0193(1997)5:1<1::AID-HBM1>3.0.CO;2-7.
2
A multivariate analysis of PET activation studies.
Hum Brain Mapp. 1996;4(2):140-51. doi: 10.1002/(SICI)1097-0193(1996)4:2<140::AID-HBM5>3.0.CO;2-3.
3
A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia.
Neuroimage. 2008 Feb 15;39(4):1774-82. doi: 10.1016/j.neuroimage.2007.10.012.
4
Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI.
IEEE Trans Med Imaging. 1993;12(2):361-5. doi: 10.1109/42.232267.
5
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
7
Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation.
Int J Psychophysiol. 2008 Mar;67(3):212-21. doi: 10.1016/j.ijpsycho.2007.05.016. Epub 2007 Jul 12.
8
Unmixing concurrent EEG-fMRI with parallel independent component analysis.
Int J Psychophysiol. 2008 Mar;67(3):222-34. doi: 10.1016/j.ijpsycho.2007.04.010. Epub 2007 Aug 3.
9
Unmixing fMRI with independent component analysis.
IEEE Eng Med Biol Mag. 2006 Mar-Apr;25(2):79-90. doi: 10.1109/memb.2006.1607672.
10
A method for multitask fMRI data fusion applied to schizophrenia.
Hum Brain Mapp. 2006 Jul;27(7):598-610. doi: 10.1002/hbm.20204.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验