Suppr超能文献

基于特征的医学成像数据融合。

Feature-based fusion of medical imaging data.

作者信息

Calhoun Vince D, Adali Tülay

机构信息

Mind Research Network and Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2009 Sep;13(5):711-20. doi: 10.1109/TITB.2008.923773. Epub 2008 Apr 22.

Abstract

The acquisition of multiple brain imaging types for a given study is a very common practice. There have been a number of approaches proposed for combining or fusing multitask or multimodal information. These can be roughly divided into those that attempt to study convergence of multimodal imaging, for example, how function and structure are related in the same region of the brain, and those that attempt to study the complementary nature of modalities, for example, utilizing temporal EEG information and spatial functional magnetic resonance imaging information. Within each of these categories, one can attempt data integration (the use of one imaging modality to improve the results of another) or true data fusion (in which multiple modalities are utilized to inform one another). We review both approaches and present a recent computational approach that first preprocesses the data to compute features of interest. The features are then analyzed in a multivariate manner using independent component analysis. We describe the approach in detail and provide examples of how it has been used for different fusion tasks. We also propose a method for selecting which combination of modalities provides the greatest value in discriminating groups. Finally, we summarize and describe future research topics.

摘要

在特定研究中获取多种脑成像类型是一种非常常见的做法。已经提出了许多用于组合或融合多任务或多模态信息的方法。这些方法大致可分为两类:一类试图研究多模态成像的收敛性,例如,大脑同一区域的功能和结构是如何相关的;另一类试图研究模态的互补性,例如,利用脑电图的时间信息和功能磁共振成像的空间信息。在每一类中,人们可以尝试数据整合(使用一种成像模态来改进另一种成像模态的结果)或真正的数据融合(利用多种模态相互提供信息)。我们回顾了这两种方法,并介绍了一种最近的计算方法,该方法首先对数据进行预处理以计算感兴趣的特征。然后使用独立成分分析以多变量方式分析这些特征。我们详细描述了该方法,并提供了其如何用于不同融合任务的示例。我们还提出了一种方法,用于选择哪种模态组合在区分组时提供最大价值。最后,我们总结并描述了未来的研究主题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验