Luguet Ambre, Graham Pearson D, Nowell Geoff M, Dreher Scott T, Coggon Judith A, Spetsius Zdislav V, Parman Stephen W
Northern Centre for Isotopic and Elemental Tracing, Department of Earth Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
Science. 2008 Jan 25;319(5862):453-6. doi: 10.1126/science.1149868.
To explain the elevated osmium isotope (186Os-187Os) signatures in oceanic basalts, the possibility of material flux from the metallic core into the crust has been invoked. This hypothesis conflicts with theoretical constraints on Earth's thermal and dynamic history. To test the veracity and uniqueness of elevated 186Os-187Os in tracing core-mantle exchange, we present highly siderophile element analyses of pyroxenites, eclogites plus their sulfides, and new 186Os/188Os measurements on pyroxenites and platinum-rich alloys. Modeling shows that involvement in the mantle source of either bulk pyroxenite or, more likely, metasomatic sulfides derived from either pyroxenite or peridotite melts can explain the 186Os-187Os signatures of oceanic basalts. This removes the requirement for core-mantle exchange and provides an effective mechanism for generating Os isotope diversity in basalt source regions.
为了解释大洋玄武岩中锇同位素(186Os - 187Os)特征升高的现象,人们提出了金属核物质向地壳通量的可能性。这一假设与地球热历史和动力学历史的理论限制相冲突。为了检验186Os - 187Os升高在追踪核幔交换方面的准确性和独特性,我们展示了辉石岩、榴辉岩及其硫化物的高度亲铁元素分析,以及辉石岩和富铂合金的新186Os/188Os测量结果。模型显示,要么是整体辉石岩,更有可能是源自辉石岩或橄榄岩熔体的交代硫化物参与地幔源区,这可以解释大洋玄武岩的186Os - 187Os特征。这消除了核幔交换的必要性,并为在玄武岩源区产生锇同位素多样性提供了一种有效机制。