Suppr超能文献

相似文献

1
Tie-dyed2 functions with tie-dyed1 to promote carbohydrate export from maize leaves.
Plant Physiol. 2008 Mar;146(3):1085-97. doi: 10.1104/pp.107.111476. Epub 2008 Jan 24.
2
Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves.
Planta. 2008 Feb;227(3):527-38. doi: 10.1007/s00425-007-0636-6. Epub 2007 Oct 9.
3
tie-dyed1 Functions non-cell autonomously to control carbohydrate accumulation in maize leaves.
Plant Physiol. 2007 Jun;144(2):867-78. doi: 10.1104/pp.107.098814. Epub 2007 Apr 13.
4
tie-dyed1 Regulates carbohydrate accumulation in maize leaves.
Plant Physiol. 2006 Dec;142(4):1511-22. doi: 10.1104/pp.106.090381. Epub 2006 Oct 27.
5
Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning.
Plant Physiol. 2009 Jan;149(1):181-94. doi: 10.1104/pp.108.130971. Epub 2008 Oct 15.
8
The tie-dyed pathway promotes symplastic trafficking in the phloem.
Plant Signal Behav. 2013 Jun;8(6):e24540. doi: 10.4161/psb.24540. Epub 2013 Apr 11.
9
The psychedelic genes of maize redundantly promote carbohydrate export from leaves.
Genetics. 2010 May;185(1):221-32. doi: 10.1534/genetics.109.113357. Epub 2010 Feb 8.
10
Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize.
J Integr Plant Biol. 2022 Sep;64(9):1755-1769. doi: 10.1111/jipb.13328. Epub 2022 Aug 23.

引用本文的文献

1
The maize callose synthase is critical for a normal growth by controlling the vascular development.
Mol Breed. 2023 Jan 3;43(1):2. doi: 10.1007/s11032-022-01350-4. eCollection 2023 Jan.
2
Identification and fine mapping of a recessive gene controlling zebra leaf phenotype in maize.
Mol Breed. 2021 Jan 22;41(2):9. doi: 10.1007/s11032-021-01202-7. eCollection 2021 Feb.
4
5
Interaction Between Induced and Natural Variation at Delays Reproductive Maturity in Maize.
G3 (Bethesda). 2020 Feb 6;10(2):797-810. doi: 10.1534/g3.119.400838.
7
Sucrose Transporter ZmSut1 Expression and Localization Uncover New Insights into Sucrose Phloem Loading.
Plant Physiol. 2016 Nov;172(3):1876-1898. doi: 10.1104/pp.16.00884. Epub 2016 Sep 12.
8
Phenotypic analyses of rice lse2 and lse3 mutants that exhibit hyperaccumulation of starch in the leaf blades.
Rice (N Y). 2014 Dec;7(1):32. doi: 10.1186/s12284-014-0032-3. Epub 2014 Dec 21.
10
The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping.
Front Genet. 2015 Jul 3;6:226. doi: 10.3389/fgene.2015.00226. eCollection 2015.

本文引用的文献

1
PHENOTYPES MEDIATED BY THE IOJAP GENOTYPE IN MAIZE.
Am J Bot. 1988 May;75(5):634-644. doi: 10.1002/j.1537-2197.1988.tb13486.x.
3
Leaf structure in relation to solute transport and phloem loading in Zea mays L.
Planta. 1978 Jan;138(3):279-94. doi: 10.1007/BF00386823.
5
Leaf vasculature in Zea mays L.
Planta. 1985 Jul;164(4):448-58. doi: 10.1007/BF00395960.
7
Translational genomics for bioenergy production: there's room for more than one model.
Plant Cell. 2007 Oct;19(10):2971-3; author reply 2973. doi: 10.1105/tpc.107.191040.
8
Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves.
Planta. 2008 Feb;227(3):527-38. doi: 10.1007/s00425-007-0636-6. Epub 2007 Oct 9.
9
Translational genomics for bioenergy production from fuelstock grasses: maize as the model species.
Plant Cell. 2007 Jul;19(7):2091-4. doi: 10.1105/tpc.107.053660. Epub 2007 Jul 27.
10
tie-dyed1 Functions non-cell autonomously to control carbohydrate accumulation in maize leaves.
Plant Physiol. 2007 Jun;144(2):867-78. doi: 10.1104/pp.107.098814. Epub 2007 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验