Ma Yi, Baker R Frank, Magallanes-Lundback Maria, DellaPenna Dean, Braun David M
Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
Planta. 2008 Feb;227(3):527-38. doi: 10.1007/s00425-007-0636-6. Epub 2007 Oct 9.
tie-dyed1 (tdy1) and sucrose export defective1 (sxd1) are recessive maize (Zea mays) mutants with nonclonal chlorotic leaf sectors that hyperaccumulate starch and soluble sugars. In addition, both mutants display similar growth-related defects such as reduced plant height and inflorescence development due to the retention of carbohydrates in leaves. As tdy1 and sxd1 are the only variegated leaf mutants known to accumulate carbohydrates in any plant, we investigated whether Tdy1 and Sxd1 function in the same pathway. Using aniline blue staining for callose and transmission electron microscopy to inspect plasmodesmatal ultrastructure, we determined that tdy1 does not have any physical blockage or alteration along the symplastic transport pathway as found in sxd1 mutants. To test whether the two genes function in the same genetic pathway, we constructed F(2) families segregating both mutations. Double mutant plants showed an additive interaction for growth related phenotypes and soluble sugar accumulation, and expressed the leaf variegation pattern of both single mutants indicating that Tdy1 and Sxd1 act in separate genetic pathways. Although sxd1 mutants lack tocopherols, we determined that tdy1 mutants have wild-type tocopherol levels, indicating that Tdy1 does not function in the same biochemical pathway as Sxd1. From these and other data we conclude that Tdy1 and Sxd1 function independently to promote carbon export from leaves. Our genetic and cytological studies implicate Tdy1 functioning in veins, and a model discussing possible functions of TDY1 is presented.
扎染1(tdy1)和蔗糖输出缺陷1(sxd1)是玉米(Zea mays)隐性突变体,具有非克隆性的褪绿叶片区域,这些区域淀粉和可溶性糖过度积累。此外,这两个突变体都表现出类似的与生长相关的缺陷,例如由于叶片中碳水化合物的滞留导致株高降低和花序发育受阻。由于tdy1和sxd1是已知的在任何植物中积累碳水化合物的仅有的杂色叶突变体,我们研究了Tdy1和Sxd1是否在同一途径中发挥作用。通过苯胺蓝对胼胝质进行染色并利用透射电子显微镜检查胞间连丝的超微结构,我们确定tdy1在共质体运输途径上没有像sxd1突变体那样的任何物理阻塞或改变。为了测试这两个基因是否在同一遗传途径中发挥作用,我们构建了同时分离这两种突变的F(2)家系。双突变体植株在与生长相关的表型和可溶性糖积累方面表现出加性相互作用,并表现出两个单突变体的叶片杂色模式,这表明Tdy1和Sxd1在不同的遗传途径中起作用。尽管sxd1突变体缺乏生育酚,但我们确定tdy1突变体具有野生型生育酚水平,这表明Tdy1与Sxd1不在同一生化途径中发挥作用。根据这些及其他数据,我们得出结论,Tdy1和Sxd1独立发挥作用以促进叶片中的碳输出。我们的遗传和细胞学研究表明Tdy1在叶脉中发挥作用,并提出了一个讨论TDY1可能功能的模型。