Suppr超能文献

染色质通道促进韧皮部中的胞质流。

The tie-dyed pathway promotes symplastic trafficking in the phloem.

机构信息

Division of Biological Sciences and Interdisciplinary Plant Group; Missouri Maize Center; University of Missouri; Columbia, MO USA.

出版信息

Plant Signal Behav. 2013 Jun;8(6):e24540. doi: 10.4161/psb.24540. Epub 2013 Apr 11.

Abstract

The tie-dyed1 (tdy1) and tdy2 mutants of maize exhibit leaf regions with starch hyperaccumulation and display unusual genetic interactions, suggesting they function in the same physiological process. Tdy2 encodes a putative callose synthase and is expressed in developing vascular tissues of immature leaves. Radiolabelling experiments and transmission electron microscopy (TEM) revealed symplastic trafficking within the phloem was perturbed at the companion cell/sieve element interface. Here, we show that as reported for tdy2 mutants, tdy1 yellow leaf regions display an excessive oil-droplet phenotype in the companion cells. Based on the proposed function of Tdy2 as a callose synthase, our previous work characterizing Tdy1 as a novel, transmembrane-localized protein, and the present findings, we speculate how TDY1 and TDY2 might interact to promote symplastic transport of both solutes and developmentally instructive macromolecules during vascular development at the companion cell/sieve element interface.

摘要

玉米的双色体 1(tdy1)和 tdy2 突变体表现出淀粉过度积累的叶片区域,并显示出异常的遗传相互作用,表明它们在同一生理过程中发挥作用。Tdy2 编码一个假定的胼胝质合酶,并在未成熟叶片的发育血管组织中表达。放射性标记实验和透射电子显微镜(TEM)显示,在伴细胞/筛分子界面处,韧皮部的胞质内运输受到干扰。在这里,我们表明,正如 tdy2 突变体所报道的那样,tdy1 黄化叶片区域在伴细胞中表现出过多的油滴表型。基于 Tdy2 作为胼胝质合酶的功能,我们之前的工作将 Tdy1 表征为一种新型的跨膜定位蛋白,以及目前的发现,我们推测 TDY1 和 TDY2 如何相互作用,以促进在伴细胞/筛分子界面处的血管发育过程中溶质和发育指导大分子的胞质内运输。

相似文献

1
The tie-dyed pathway promotes symplastic trafficking in the phloem.
Plant Signal Behav. 2013 Jun;8(6):e24540. doi: 10.4161/psb.24540. Epub 2013 Apr 11.
3
Tie-dyed2 functions with tie-dyed1 to promote carbohydrate export from maize leaves.
Plant Physiol. 2008 Mar;146(3):1085-97. doi: 10.1104/pp.107.111476. Epub 2008 Jan 24.
4
Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning.
Plant Physiol. 2009 Jan;149(1):181-94. doi: 10.1104/pp.108.130971. Epub 2008 Oct 15.
5
Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves.
Planta. 2008 Feb;227(3):527-38. doi: 10.1007/s00425-007-0636-6. Epub 2007 Oct 9.
6
Maize Carbohydrate Partitioning Defective33 Encodes an MCTP Protein and Functions in Sucrose Export from Leaves.
Mol Plant. 2019 Sep 2;12(9):1278-1293. doi: 10.1016/j.molp.2019.05.001. Epub 2019 May 16.
7
tie-dyed1 Functions non-cell autonomously to control carbohydrate accumulation in maize leaves.
Plant Physiol. 2007 Jun;144(2):867-78. doi: 10.1104/pp.107.098814. Epub 2007 Apr 13.
9
CalS7 encodes a callose synthase responsible for callose deposition in the phloem.
Plant J. 2011 Jan;65(1):1-14. doi: 10.1111/j.1365-313X.2010.04399.x. Epub 2010 Nov 9.

引用本文的文献

2
Uncharted routes: exploring the relevance of auxin movement via plasmodesmata.
Biol Open. 2020 Nov 12;9(11):bio055541. doi: 10.1242/bio.055541.
5
Sucrose Transporter ZmSut1 Expression and Localization Uncover New Insights into Sucrose Phloem Loading.
Plant Physiol. 2016 Nov;172(3):1876-1898. doi: 10.1104/pp.16.00884. Epub 2016 Sep 12.
6
Metabolite transport and associated sugar signalling systems underpinning source/sink interactions.
Biochim Biophys Acta. 2016 Oct;1857(10):1715-25. doi: 10.1016/j.bbabio.2016.07.007. Epub 2016 Jul 31.
7
The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping.
Front Genet. 2015 Jul 3;6:226. doi: 10.3389/fgene.2015.00226. eCollection 2015.

本文引用的文献

1
Leaf structure in relation to solute transport and phloem loading in Zea mays L.
Planta. 1978 Jan;138(3):279-94. doi: 10.1007/BF00386823.
2
Transcription factors on the move.
Curr Opin Plant Biol. 2012 Dec;15(6):645-51. doi: 10.1016/j.pbi.2012.09.010. Epub 2012 Sep 29.
4
The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue.
Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13010-5. doi: 10.1073/pnas.1205579109. Epub 2012 Jul 23.
5
SWEET as sugar: new sucrose effluxers in plants.
Mol Plant. 2012 Jul;5(4):766-8. doi: 10.1093/mp/sss054.
6
FTIP1 is an essential regulator required for florigen transport.
PLoS Biol. 2012;10(4):e1001313. doi: 10.1371/journal.pbio.1001313. Epub 2012 Apr 17.
7
SCARECROW has a SHORT-ROOT-independent role in modulating the sugar response.
Plant Physiol. 2012 Apr;158(4):1769-78. doi: 10.1104/pp.111.191502. Epub 2012 Feb 6.
8
Plant science. SWEET! The pathway is complete.
Science. 2012 Jan 13;335(6065):173-4. doi: 10.1126/science.1216828.
9
Callose biosynthesis regulates symplastic trafficking during root development.
Dev Cell. 2011 Dec 13;21(6):1144-55. doi: 10.1016/j.devcel.2011.10.006.
10
Sucrose efflux mediated by SWEET proteins as a key step for phloem transport.
Science. 2012 Jan 13;335(6065):207-11. doi: 10.1126/science.1213351. Epub 2011 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验