Suppr超能文献

一类连续时间递归神经网络的离散时间模拟

Discrete-time analogs for a class of continuous-time recurrent neural networks.

作者信息

Liu Pingzhou, Han Qing-long

机构信息

School of Computing Sciences, Faculty of Business and Informatics, Central Queensland University, Rockhampton, Qld 4702, Australia.

出版信息

IEEE Trans Neural Netw. 2007 Sep;18(5):1343-55. doi: 10.1109/tnn.2007.891593.

Abstract

This paper is concerned with the problem of local and global asymptotic stability for a class of discrete-time recurrent neural networks, which provide discrete-time analogs to their continuous-time counterparts, i.e., continuous-time recurrent neural networks with distributed delay. Some stability criteria, which include some existing results as their special cases, are derived. A discussion about the dynamical consistence of discrete-time neural networks versus their continuous-time counterparts is provided. An unconventional finite difference method is proposed and an example is also given to show the effectiveness of the method.

摘要

本文关注一类离散时间递归神经网络的局部和全局渐近稳定性问题,这类网络为其连续时间对应网络(即具有分布时滞的连续时间递归神经网络)提供了离散时间模拟。推导了一些稳定性准则,其中包括一些现有结果作为其特殊情况。给出了关于离散时间神经网络与其连续时间对应网络动力学一致性的讨论。提出了一种非常规有限差分方法,并给出一个例子以说明该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验