Suppr超能文献

时滞相关状态估计器设计用于具有区间离散和无穷分布时变时滞的离散时间递归神经网络。

Design of delay-dependent state estimator for discrete-time recurrent neural networks with interval discrete and infinite-distributed time-varying delays.

机构信息

Department of Industrial Education and Technology, National Changhua University of Education, 500 Changhua, Taiwan, ROC.

出版信息

Cogn Neurodyn. 2011 Jun;5(2):133-43. doi: 10.1007/s11571-010-9135-8. Epub 2010 Sep 18.

Abstract

The state estimation problem for discrete-time recurrent neural networks with both interval discrete and infinite-distributed time-varying delays is studied in this paper, where interval discrete time-varying delay is in a given range. The activation functions are assumed to be globally Lipschitz continuous. A delay-dependent condition for the existence of state estimators is proposed based on new bounding techniques. Via solutions to certain linear matrix inequalities, general full-order state estimators are designed that ensure globally asymptotic stability. The significant feature is that no inequality is needed for seeking upper bounds for the inner product between two vectors, which can reduce the conservatism of the criterion by employing the new bounding techniques. Two illustrative examples are given to demonstrate the effectiveness and applicability of the proposed approach.

摘要

本文研究了具有区间离散和无穷分布时变时滞的离散时间递归神经网络的状态估计问题,其中区间离散时滞在给定范围内。假设激活函数是全局 Lipschitz 连续的。基于新的界估计技术,提出了一个与时滞相关的状态估计器存在性条件。通过求解某些线性矩阵不等式,设计了一般的全阶状态估计器,以确保全局渐近稳定性。显著的特点是,在寻求两个向量内积的上界时,不需要不等式,这可以通过采用新的界估计技术来减少判据的保守性。给出了两个说明性示例,以验证所提出方法的有效性和适用性。

相似文献

5
7
Improved Stability Criterion for Recurrent Neural Networks With Time-Varying Delays.具有时变延迟的递归神经网络的改进稳定性准则
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5756-5760. doi: 10.1109/TNNLS.2018.2795546. Epub 2018 Feb 12.

本文引用的文献

9
Delay-dependent state estimation for delayed neural networks.时滞神经网络的时滞依赖状态估计
IEEE Trans Neural Netw. 2006 Jul;17(4):1077-1081. doi: 10.1109/TNN.2006.875969.
10
Neural computation by concentrating information in time.通过在时间上集中信息进行神经计算。
Proc Natl Acad Sci U S A. 1987 Apr;84(7):1896-900. doi: 10.1073/pnas.84.7.1896.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验