Deng Zhidong, Zhang Yi
Department of Computer Science, Tsinghua University, Beijing 100084, China.
IEEE Trans Neural Netw. 2007 Sep;18(5):1364-75. doi: 10.1109/tnn.2007.894082.
This paper proposes a scale-free highly clustered echo state network (SHESN). We designed the SHESN to include a naturally evolving state reservoir according to incremental growth rules that account for the following features: (1) short characteristic path length, (2) high clustering coefficient, (3) scale-free distribution, and (4) hierarchical and distributed architecture. This new state reservoir contains a large number of internal neurons that are sparsely interconnected in the form of domains. Each domain comprises one backbone neuron and a number of local neurons around this backbone. Such a natural and efficient recurrent neural system essentially interpolates between the completely regular Elman network and the completely random echo state network (ESN) proposed by Jaeger et al. We investigated the collective characteristics of the proposed complex network model. We also successfully applied it to challenging problems such as the Mackey-Glass (MG) dynamic system and the laser time-series prediction. Compared to the ESN, our experimental results show that the SHESN model has a significantly enhanced echo state property and better performance in approximating highly complex nonlinear dynamics. In a word, this large scale dynamic complex network reflects some natural characteristics of biological neural systems in many aspects such as power law, small-world property, and hierarchical architecture. It should have strong computing power, fast signal propagation speed, and coherent synchronization.
本文提出了一种无标度高度聚类回声状态网络(SHESN)。我们设计的SHESN包含一个根据增量增长规则自然演化的状态储备池,该规则考虑了以下特征:(1)短特征路径长度;(2)高聚类系数;(3)无标度分布;(4)分层分布式架构。这个新的状态储备池包含大量内部神经元,它们以域的形式稀疏互连。每个域由一个主干神经元和围绕该主干的一些局部神经元组成。这样一个自然而高效的递归神经网络本质上是在完全规则的埃尔曼网络和耶格尔等人提出的完全随机回声状态网络(ESN)之间进行插值。我们研究了所提出的复杂网络模型的集体特征。我们还成功地将其应用于具有挑战性的问题,如麦基-格拉斯(MG)动态系统和激光时间序列预测。与ESN相比,我们的实验结果表明,SHESN模型具有显著增强的回声状态特性,并且在逼近高度复杂的非线性动力学方面具有更好的性能。总之,这个大规模动态复杂网络在许多方面反映了生物神经系统的一些自然特征,如幂律、小世界特性和分层架构。它应该具有强大的计算能力、快速的信号传播速度和相干同步。