Suppr超能文献

基于相空间重构的概念网络的混沌时间序列预测

Chaotic time series prediction using phase space reconstruction based conceptor network.

作者信息

Zhang Anguo, Xu Zheng

机构信息

College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108 China.

Key Laboratory of Medical Instrumentation and Pharmaceutical Technology of Fujian Province, Fuzhou, 350116 China.

出版信息

Cogn Neurodyn. 2020 Dec;14(6):849-857. doi: 10.1007/s11571-020-09612-7. Epub 2020 Jul 23.

Abstract

The Conceptor network is a new framework of reservoir computing (RC), in addition to the features of easy training, global convergence, it can online learn new classes of input patterns without complete re-learning from all the training data. The conventional connection topology and weights of the hidden layer (reservoir) of RC are initialized randomly, and are fixed to be no longer fine-tuned after initialization. However, it has been demonstrated that the reservoir connection of RC plays an important role in the computational performance of RC. Therefore, in this paper, we optimize the Conceptor's reservoir connection and propose a phase space reconstruction (PSR) -based reservoir generation method. We tested the generation method on time series prediction task, and the experiment results showed that the proposed PSR-based method can improve the prediction accuracy of Conceptor networks. Further, we compared the PSR-based Conceptor with two Conceptor networks of other typical reservoir topologies (random connected, cortex-like connected), and found that all of their prediction accuracy showed a nonlinear decline trend with increasing storage load, but in comparison, our proposed PSR-based method has the best accuracy under different storage loads.

摘要

概念器网络是一种新型的储层计算(RC)框架,除了具有易于训练、全局收敛的特点外,它还能够在线学习新的输入模式类别,而无需从所有训练数据重新进行完整学习。传统的储层计算隐藏层(储层)的连接拓扑和权重是随机初始化的,初始化后固定不变不再进行微调。然而,已经证明储层计算的储层连接在其计算性能中起着重要作用。因此,在本文中,我们优化了概念器的储层连接,并提出了一种基于相空间重构(PSR)的储层生成方法。我们在时间序列预测任务上测试了该生成方法,实验结果表明所提出的基于PSR的方法可以提高概念器网络的预测精度。此外,我们将基于PSR的概念器与其他两种典型储层拓扑(随机连接、类皮层连接)的概念器网络进行了比较,发现它们的预测精度均随着存储负载的增加呈现非线性下降趋势,但相比之下,我们提出的基于PSR的方法在不同存储负载下具有最佳精度。

相似文献

1
Chaotic time series prediction using phase space reconstruction based conceptor network.
Cogn Neurodyn. 2020 Dec;14(6):849-857. doi: 10.1007/s11571-020-09612-7. Epub 2020 Jul 23.
2
Sample-level sound synthesis with recurrent neural networks and conceptors.
PeerJ Comput Sci. 2019 Jul 8;5:e205. doi: 10.7717/peerj-cs.205. eCollection 2019.
3
Reservoir Computing Using DNA Oscillators.
ACS Synth Biol. 2022 Feb 18;11(2):780-787. doi: 10.1021/acssynbio.1c00483. Epub 2022 Jan 26.
5
6
Adaptive time-delayed photonic reservoir computing based on Kalman-filter training.
Opt Express. 2022 Apr 11;30(8):13647-13658. doi: 10.1364/OE.454852.
8
A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
Neural Netw. 2022 Sep;153:530-552. doi: 10.1016/j.neunet.2022.06.025. Epub 2022 Jun 30.
10
Reservoir Computing Approaches for Representation and Classification of Multivariate Time Series.
IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):2169-2179. doi: 10.1109/TNNLS.2020.3001377. Epub 2021 May 3.

引用本文的文献

1
Coupling analysis of contra-rotating fan interstage pressure pulsation and blade vibration based on wavelet reconstruction.
PLoS One. 2021 Feb 9;16(2):e0245985. doi: 10.1371/journal.pone.0245985. eCollection 2021.

本文引用的文献

1
Complex temporal patterns processing by a neural mass model of a cortical column.
Cogn Neurodyn. 2019 Aug;13(4):379-392. doi: 10.1007/s11571-019-09531-2. Epub 2019 Apr 6.
2
Complex network based models of ECoG signals for detection of induced epileptic seizures in rats.
Cogn Neurodyn. 2019 Aug;13(4):325-339. doi: 10.1007/s11571-019-09527-y. Epub 2019 Mar 15.
3
Bursting dynamics remarkably improve the performance of neural networks on liquid computing.
Cogn Neurodyn. 2016 Oct;10(5):415-21. doi: 10.1007/s11571-016-9387-z. Epub 2016 Apr 28.
4
A priori data-driven multi-clustered reservoir generation algorithm for echo state network.
PLoS One. 2015 Apr 13;10(4):e0120750. doi: 10.1371/journal.pone.0120750. eCollection 2015.
5
Complex network from time series based on phase space reconstruction.
Chaos. 2009 Sep;19(3):033137. doi: 10.1063/1.3227736.
6
Collective behavior of a small-world recurrent neural system with scale-free distribution.
IEEE Trans Neural Netw. 2007 Sep;18(5):1364-75. doi: 10.1109/tnn.2007.894082.
7
Automatic speech recognition using a predictive echo state network classifier.
Neural Netw. 2007 Apr;20(3):414-23. doi: 10.1016/j.neunet.2007.04.006. Epub 2007 Apr 29.
8
Optimization and applications of echo state networks with leaky-integrator neurons.
Neural Netw. 2007 Apr;20(3):335-52. doi: 10.1016/j.neunet.2007.04.016. Epub 2007 May 3.
9
Complex network from pseudoperiodic time series: topology versus dynamics.
Phys Rev Lett. 2006 Jun 16;96(23):238701. doi: 10.1103/PhysRevLett.96.238701. Epub 2006 Jun 14.
10
Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication.
Science. 2004 Apr 2;304(5667):78-80. doi: 10.1126/science.1091277.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验