Logue M W, Li Y
Genetics Program, Boston University School of Medicine, 715 Albany St. L320D, Boston, MA 02118, USA.
Hum Hered. 2008;66(1):25-34. doi: 10.1159/000114163. Epub 2008 Jan 28.
The posterior probability of linkage, or PPL, directly measures the probability that a disease gene is linked to a marker. By placing a Bayesian prior on the elements of the genetic model, it allows for an unknown genetic model without the inflationary effects of maximization. The standard technique uses essentially uniform priors over the elements of the penetrance vector. However, much of the parameter space corresponds to models that seem unlikely to yield substantial evidence for linkage: for example, models with very high phenocopy rates.
A new class of priors on the elements of the genetic model is examined both theoretically and in simulations. These priors place 0% probability over models with low sibling relative risk, lambda(s).
Focusing the prior probability on high lambda(s) models does tend to increase the mean PPL for linked markers, and to decrease the mean PPL for unlinked markers. However, the power to detect linkage remains virtually unchanged. Moreover, under these priors, the PPL occasionally yields unacceptably high values under no linkage.
It appears important to retain prior probability over apparently 'uninformative' genetic models to accurately characterize the amount of evidence for linkage represented by the data.
连锁的后验概率,即PPL,直接衡量疾病基因与标记连锁的概率。通过对遗传模型的元素设定贝叶斯先验,它可以处理未知的遗传模型,而不会受到最大化带来的膨胀效应影响。标准技术在渗透向量的元素上基本使用均匀先验。然而,大部分参数空间对应的模型似乎不太可能产生大量连锁证据:例如,具有非常高拟表型率的模型。
从理论和模拟两方面研究了一类新的遗传模型元素先验。这些先验对同胞相对风险较低(λs)的模型赋予0%的概率。
将先验概率集中在高λs模型上确实倾向于提高连锁标记的平均PPL,并降低非连锁标记的平均PPL。然而,检测连锁的能力实际上保持不变。此外,在这些先验条件下,在无连锁时PPL偶尔会产生高得不可接受的值。
对明显“无信息”的遗传模型保留先验概率,对于准确描述数据所代表的连锁证据量似乎很重要。