Tanner Nathan A, Hamdan Samir M, Jergic Slobodan, Loscha Karin V, Schaeffer Patrick M, Dixon Nicholas E, van Oijen Antoine M
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, USA.
Nat Struct Mol Biol. 2008 Feb;15(2):170-6. doi: 10.1038/nsmb.1381. Epub 2008 Jan 27.
We present single-molecule studies of the Escherichia coli replication machinery. We visualize individual E. coli DNA polymerase III (Pol III) holoenzymes engaging in primer extension and leading-strand synthesis. When coupled to the replicative helicase DnaB, Pol III mediates leading-strand synthesis with a processivity of 10.5 kilobases (kb), eight-fold higher than that by Pol III alone. Addition of the primase DnaG causes a three-fold reduction in the processivity of leading-strand synthesis, an effect dependent upon the DnaB-DnaG protein-protein interaction rather than primase activity. A single-molecule analysis of the replication kinetics with varying DnaG concentrations indicates that a cooperative binding of two or three DnaG monomers to DnaB halts synthesis. Modulation of DnaB helicase activity through the interaction with DnaG suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during slow primer synthesis on the lagging strand.
我们展示了对大肠杆菌复制机制的单分子研究。我们观察到单个大肠杆菌DNA聚合酶III(Pol III)全酶参与引物延伸和前导链合成。当与复制解旋酶DnaB结合时,Pol III介导前导链合成,持续合成能力为10.5千碱基(kb),比单独的Pol III高八倍。添加引发酶DnaG会使前导链合成的持续合成能力降低三倍,这种效应依赖于DnaB-DnaG蛋白-蛋白相互作用而非引发酶活性。对不同DnaG浓度下复制动力学的单分子分析表明,两个或三个DnaG单体与DnaB的协同结合会停止合成。通过与DnaG的相互作用对DnaB解旋酶活性的调节提示了一种机制,该机制可防止在滞后链上引物合成缓慢时前导链合成超过滞后链合成。