Suppr超能文献

在过完备金字塔中使用空间可变高斯尺度混合进行图像恢复。

Image restoration using space-variant Gaussian scale mixtures in overcomplete pyramids.

作者信息

Guerrero-Colón Jose A, Mancera Luis, Portilla Javier

机构信息

Department of Computer Science and Artificial Intelligence, Universidad de Granada, Spain.

出版信息

IEEE Trans Image Process. 2008 Jan;17(1):27-41. doi: 10.1109/tip.2007.911473.

Abstract

In recent years, Bayes least squares-Gaussian scale mixtures (BLS-GSM) has emerged as one of the most powerful methods for image restoration. Its strength relies on providing a simple and, yet, very effective local statistical description of oriented pyramid coefficient neighborhoods via a GSM vector. This can be viewed as a fine adaptation of the model to the signal variance at each scale, orientation, and spatial location. Here, we present an enhancement of the model by introducing a coarser adaptation level, where a larger neighborhood is used to estimate the local signal covariance within every subband. We formulate our model as a BLS estimator using space-variant GSM. The model can be also applied to image deconvolution, by first performing a global blur compensation, and then doing local adaptive denoising. We demonstrate through simulations that the proposed method, besides being model-based and noniterative, it is also robust and efficient. Its performance, measured visually and in L2-norm terms, is significantly higher than the original BLS-GSM method, both for denoising and deconvolution.

摘要

近年来,贝叶斯最小二乘 - 高斯尺度混合模型(BLS - GSM)已成为图像恢复领域最强大的方法之一。其优势在于通过一个高斯尺度混合(GSM)向量,对定向金字塔系数邻域提供简单而非常有效的局部统计描述。这可以看作是模型对每个尺度、方向和空间位置处信号方差的精细适配。在此,我们通过引入一个更粗糙的适配层级来增强该模型,在这个层级中,使用更大的邻域来估计每个子带内的局部信号协方差。我们将模型构建为使用空间可变高斯尺度混合的贝叶斯最小二乘估计器。该模型还可应用于图像去卷积,方法是先进行全局模糊补偿,然后进行局部自适应去噪。我们通过模拟表明,所提出的方法除了基于模型且非迭代之外,还具有鲁棒性和高效性。在视觉和L2范数方面衡量,其性能在去噪和去卷积方面均显著高于原始的BLS - GSM方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验