Li Xuelong, Pang Yanwei, Yuan Yuan
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China.
IEEE Trans Syst Man Cybern B Cybern. 2010 Aug;40(4):1170-5. doi: 10.1109/TSMCB.2009.2035629. Epub 2010 Jan 15.
In this paper, we first present a simple but effective L1-norm-based two-dimensional principal component analysis (2DPCA). Traditional L2-norm-based least squares criterion is sensitive to outliers, while the newly proposed L1-norm 2DPCA is robust. Experimental results demonstrate its advantages.
在本文中,我们首先提出一种简单但有效的基于L1范数的二维主成分分析(2DPCA)。传统的基于L2范数的最小二乘准则对异常值敏感,而新提出的基于L1范数的2DPCA具有鲁棒性。实验结果证明了它的优势。