Cha Paul, Krishnan Anandi, Fiore Vincent F, Vogler Erwin A
Department of Materials Science, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Langmuir. 2008 Mar 18;24(6):2553-63. doi: 10.1021/la703310k. Epub 2008 Jan 30.
Adsorption isotherms constructed from time-and-concentration-dependent advancing contact angles thetaa show that the profound biochemical diversity among ten different blood proteins with molecular weight spanning 10-1000 kDa has little discernible effect on the amount adsorbed from aqueous phosphate-buffered saline (PBS) solution after 1 h contact with a particular test surface selected from the full range of observable water wettability (as quantified by PBS adhesion tension tauoa=gammaolv cos thetaoa; where gammaolv is the liquid-vapor interfacial tension and thetaoa is the advancing PBS contact angle). The maximum advancing spreading pressure, Pimaxa, determined from adsorption isotherms decreases systematically with tauoa for methyl-terminated self-assembled monolayers (CH3 SAM, tauo=-15 mN/m), polystyrene spun-coated onto electronic-grade SiOx wafers (PS, tauo=7.2 mN/m), aminopropyltriethoxysilane-treated SiOx surfaces (APTES, tauo = 42 mN/m), and fully water wettable SiOx (tauo=72 mN/m). Likewise, the apparent Gibbs' surface excess [Gammasl-Gammasv], which measures the difference in the amount of protein adsorbed Gamma (mol/cm2) at solid-vapor (SV) and solid-liquid (SL) interfaces, decreases with tauo from maximal values measured on the CH3 SAM surface through zero (no protein adsorption in excess of bulk solution concentration) near tauo=30 mN/m (thetaa=65 degrees). These latter results corroborate the conclusion drawn from independent studies that water is too strongly bound to surfaces with tauo>or=30 mN/m to be displaced by adsorbing protein and that, as a consequence, protein does not accumulate within the interfacial region of such surfaces at concentrations exceeding that of bulk solution ([Gammasl-Gammasv]=0 at tauo=30 mN/m). Results are collectively interpreted to mean that water controls protein adsorption to surfaces and that the mechanism of protein adsorption can be understood from this perspective for a diverse set of proteins with very different amino acid compositions.
由随时间和浓度变化的前进接触角θa构建的吸附等温线表明,十种分子量跨度为10 - 1000 kDa的不同血液蛋白之间显著的生化多样性,在与从整个可观测水润湿性范围内选择的特定测试表面接触1小时后(通过磷酸盐缓冲盐水(PBS)粘附张力τoa =γolv cosθoa量化;其中γolv是液 - 气界面张力,θoa是前进PBS接触角),对从PBS水溶液中吸附的量几乎没有明显影响。对于甲基封端的自组装单分子层(CH3 SAM,τo = - 15 mN/m)、旋涂在电子级SiOx晶片上的聚苯乙烯(PS,τo = 7.2 mN/m)、氨丙基三乙氧基硅烷处理的SiOx表面(APTES,τo = 42 mN/m)和完全水润湿性的SiOx(τo = 72 mN/m),由吸附等温线确定的最大前进铺展压力Pimaxa随τoa系统地降低。同样,表观吉布斯表面过剩量[Gammasl - Gammasv],它测量在固 - 气(SV)和固 - 液(SL)界面处吸附的蛋白量Γ(mol/cm²)的差异,从在CH3 SAM表面上测量的最大值随τo降低,在τo = 30 mN/m(θa = 65度)附近降至零(没有超过本体溶液浓度的蛋白吸附)。后一结果证实了从独立研究得出的结论,即对于τo≥30 mN/m的表面,水与表面结合过于紧密以至于不能被吸附的蛋白取代,因此,在浓度超过本体溶液浓度时,蛋白不会在这种表面的界面区域积累(在τo = 30 mN/m时[Gammasl - Gammasv] = 0)。这些结果共同解释为意味着水控制蛋白在表面的吸附,并且从这个角度可以理解具有非常不同氨基酸组成的多种蛋白的蛋白吸附机制。